Dual recombinase-mediated intersectional genetics defines the functional heterogeneity of neural stem cells in adult hippocampus

IF 9.6 1区 医学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY
Ziqi Liang, Zhimin Li, Dan Zhang, Xing Luo, Qiang Liu, Dezhe Qin, Min Wang, Zhiheng Xu, Jin Feng, Jinting He, Weixiang Guo
{"title":"Dual recombinase-mediated intersectional genetics defines the functional heterogeneity of neural stem cells in adult hippocampus","authors":"Ziqi Liang, Zhimin Li, Dan Zhang, Xing Luo, Qiang Liu, Dezhe Qin, Min Wang, Zhiheng Xu, Jin Feng, Jinting He, Weixiang Guo","doi":"10.1038/s41380-025-02937-x","DOIUrl":null,"url":null,"abstract":"<p>The Cre-lox site-specific recombinase system is one of the most powerful and versatile technology platforms for studying neural stem cells (NSCs) in adult brain, which is now challenged due to the complex and dynamic nature of in vivo gene expression. In this study, we develop an inducible dual recombinase-mediated intersectional genetics by combining Dre-rox and Cre-lox recombination technologies to specifically target two subpopulations of NSCs (α- and β-NSCs). By visiting their cell lineage and functionality, we find that α- and β-NSCs display distinct self-renewal and differentiation potential, as well as differential responses to external stimuli. Notably, in contrast to α-NSCs, the number of β-NSCs is not affected in aged mice and an APP/PS1 mouse model of Alzeimer’s disease. Single cell transcriptome analysis reveals divergent molecular signatures between type α- and β-NSCs and identifies PRMT1 as an important regulatory element to differentially regulate the neurogenic potential of α- and β-NSCs. Inhibition of PRMT1 specifically enhances the neurogenic capacity of β-NSCs and promotes the cognition functions in aged mice. Importantly, PRMT1 inhibition combined with increased BDNF levels pharmacologically ameliorates the cognitive impairments in APP/PS1 mice. Together, our study suggests that understanding the functional heterogeneity of NSCs might pave the way for harnessing the specific subpopulation of NSCs to treat brain disorders.</p>","PeriodicalId":19008,"journal":{"name":"Molecular Psychiatry","volume":"5 1","pages":""},"PeriodicalIF":9.6000,"publicationDate":"2025-02-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular Psychiatry","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1038/s41380-025-02937-x","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

The Cre-lox site-specific recombinase system is one of the most powerful and versatile technology platforms for studying neural stem cells (NSCs) in adult brain, which is now challenged due to the complex and dynamic nature of in vivo gene expression. In this study, we develop an inducible dual recombinase-mediated intersectional genetics by combining Dre-rox and Cre-lox recombination technologies to specifically target two subpopulations of NSCs (α- and β-NSCs). By visiting their cell lineage and functionality, we find that α- and β-NSCs display distinct self-renewal and differentiation potential, as well as differential responses to external stimuli. Notably, in contrast to α-NSCs, the number of β-NSCs is not affected in aged mice and an APP/PS1 mouse model of Alzeimer’s disease. Single cell transcriptome analysis reveals divergent molecular signatures between type α- and β-NSCs and identifies PRMT1 as an important regulatory element to differentially regulate the neurogenic potential of α- and β-NSCs. Inhibition of PRMT1 specifically enhances the neurogenic capacity of β-NSCs and promotes the cognition functions in aged mice. Importantly, PRMT1 inhibition combined with increased BDNF levels pharmacologically ameliorates the cognitive impairments in APP/PS1 mice. Together, our study suggests that understanding the functional heterogeneity of NSCs might pave the way for harnessing the specific subpopulation of NSCs to treat brain disorders.

Abstract Image

双重组酶介导的交叉遗传学定义了成体海马神经干细胞的功能异质性
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Molecular Psychiatry
Molecular Psychiatry 医学-精神病学
CiteScore
20.50
自引率
4.50%
发文量
459
审稿时长
4-8 weeks
期刊介绍: Molecular Psychiatry focuses on publishing research that aims to uncover the biological mechanisms behind psychiatric disorders and their treatment. The journal emphasizes studies that bridge pre-clinical and clinical research, covering cellular, molecular, integrative, clinical, imaging, and psychopharmacology levels.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信