{"title":"CircAKT3 promotes prostate cancer proliferation and metastasis by enhancing the binding of RPS27A and RPL11","authors":"Xiaoming Song, Ziwei Wei, Cong Zhang, Dunsheng Han, Jinke Liu, Yufeng Song, Xuefeng Xie, Dingchang Shao, Mingkun Zhao, Fan Chao, Guoxiong Xu, Shiyu Wang, Gang Chen","doi":"10.1186/s12943-025-02261-6","DOIUrl":null,"url":null,"abstract":"Metastatic prostate cancer (PCa) is a leading cause of mortality among PCa patients. Although circular RNAs (circRNAs) are recognized for their pivotal roles in tumorigenesis, the specifics of their influence within the context of PCa have yet to be fully elucidated. RT-qPCR was conducted to evaluate circAKT3 expression in PCa cells and in both tumor and adjacent noncancerous tissues. The oncogenic role of circAKT3 was confirmed through a combination of in vitro and in vivo experiments. Mechanistic investigations using RNA-pulldown, RNA immunoprecipitation (RIP), fluorescence in situ hybridization (FISH), immunofluorescence (IF), and Chromatin Immunoprecipitation (ChIP) assays explored how circAKT3 modulates c-Myc activity via interactions with RPS27A and RPL11. Additionally, Western Blotting and further in vitro and in vivo studies assessed circAKT3's influence on PCa progression through MST1. This research identified the function and regulation of circAKT3, a circRNA derived from exons 2 to 8 of the kinase-b3 (AKT3) gene, in human PCa cells. CircAKT3 was significantly correlated with clinical indicators of disease severity, including D'Amico risk classification, the Gleason score, and pT stage. Both in vitro and in vivo experiments demonstrated that circAKT3 knockdown inhibited PCa cell proliferation, migration, and invasion. Lipid nanoparticles encapsulating si-circAKT3 (LNP-si-circAKT3) effectively suppressed the growth of bone tumors formed by PCa cells. Mechanistically, circAKT3 acted as a protein scaffold between ribosomal protein S27a (RPS27A) and ribosomal protein L11 (RPL11), promoting their cytoplasmic translocation and reducing nuclear RPL11 levels, ultimately diminishing RPL11’s interaction with c-Myc and resulting in enhanced c-Myc-driven suppression of macrophage stimulating 1 (MST1) expression. Consequently, the decreased MST1 led to PCa progression and metastasis. CircAKT3 formation was facilitated by both flanking Alu elements and the RNA binding protein Quaking (QKI). Additionally, downregulation of the RNA helicase URH49 resulted in the nuclear accumulation of circAKT3, finally suppressing MST1 expression. Our findings suggest that circAKT3 acts as a protein scaffold, promoting the interaction between RPS27A and RPL11, thereby influencing c-Myc activity and PCa progression. This study underscores the crucial role of circAKT3 in PCa and its potential as a therapeutic target to impede malignancy progression and metastasis.","PeriodicalId":19000,"journal":{"name":"Molecular Cancer","volume":"14 1","pages":""},"PeriodicalIF":27.7000,"publicationDate":"2025-02-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular Cancer","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1186/s12943-025-02261-6","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Metastatic prostate cancer (PCa) is a leading cause of mortality among PCa patients. Although circular RNAs (circRNAs) are recognized for their pivotal roles in tumorigenesis, the specifics of their influence within the context of PCa have yet to be fully elucidated. RT-qPCR was conducted to evaluate circAKT3 expression in PCa cells and in both tumor and adjacent noncancerous tissues. The oncogenic role of circAKT3 was confirmed through a combination of in vitro and in vivo experiments. Mechanistic investigations using RNA-pulldown, RNA immunoprecipitation (RIP), fluorescence in situ hybridization (FISH), immunofluorescence (IF), and Chromatin Immunoprecipitation (ChIP) assays explored how circAKT3 modulates c-Myc activity via interactions with RPS27A and RPL11. Additionally, Western Blotting and further in vitro and in vivo studies assessed circAKT3's influence on PCa progression through MST1. This research identified the function and regulation of circAKT3, a circRNA derived from exons 2 to 8 of the kinase-b3 (AKT3) gene, in human PCa cells. CircAKT3 was significantly correlated with clinical indicators of disease severity, including D'Amico risk classification, the Gleason score, and pT stage. Both in vitro and in vivo experiments demonstrated that circAKT3 knockdown inhibited PCa cell proliferation, migration, and invasion. Lipid nanoparticles encapsulating si-circAKT3 (LNP-si-circAKT3) effectively suppressed the growth of bone tumors formed by PCa cells. Mechanistically, circAKT3 acted as a protein scaffold between ribosomal protein S27a (RPS27A) and ribosomal protein L11 (RPL11), promoting their cytoplasmic translocation and reducing nuclear RPL11 levels, ultimately diminishing RPL11’s interaction with c-Myc and resulting in enhanced c-Myc-driven suppression of macrophage stimulating 1 (MST1) expression. Consequently, the decreased MST1 led to PCa progression and metastasis. CircAKT3 formation was facilitated by both flanking Alu elements and the RNA binding protein Quaking (QKI). Additionally, downregulation of the RNA helicase URH49 resulted in the nuclear accumulation of circAKT3, finally suppressing MST1 expression. Our findings suggest that circAKT3 acts as a protein scaffold, promoting the interaction between RPS27A and RPL11, thereby influencing c-Myc activity and PCa progression. This study underscores the crucial role of circAKT3 in PCa and its potential as a therapeutic target to impede malignancy progression and metastasis.
期刊介绍:
Molecular Cancer is a platform that encourages the exchange of ideas and discoveries in the field of cancer research, particularly focusing on the molecular aspects. Our goal is to facilitate discussions and provide insights into various areas of cancer and related biomedical science. We welcome articles from basic, translational, and clinical research that contribute to the advancement of understanding, prevention, diagnosis, and treatment of cancer.
The scope of topics covered in Molecular Cancer is diverse and inclusive. These include, but are not limited to, cell and tumor biology, angiogenesis, utilizing animal models, understanding metastasis, exploring cancer antigens and the immune response, investigating cellular signaling and molecular biology, examining epidemiology, genetic and molecular profiling of cancer, identifying molecular targets, studying cancer stem cells, exploring DNA damage and repair mechanisms, analyzing cell cycle regulation, investigating apoptosis, exploring molecular virology, and evaluating vaccine and antibody-based cancer therapies.
Molecular Cancer serves as an important platform for sharing exciting discoveries in cancer-related research. It offers an unparalleled opportunity to communicate information to both specialists and the general public. The online presence of Molecular Cancer enables immediate publication of accepted articles and facilitates the presentation of large datasets and supplementary information. This ensures that new research is efficiently and rapidly disseminated to the scientific community.