Reliable Open-Set Network Traffic Classification

IF 6.3 1区 计算机科学 Q1 COMPUTER SCIENCE, THEORY & METHODS
Xueman Wang;Yipeng Wang;Yingxu Lai;Zhiyu Hao;Alex X. Liu
{"title":"Reliable Open-Set Network Traffic Classification","authors":"Xueman Wang;Yipeng Wang;Yingxu Lai;Zhiyu Hao;Alex X. Liu","doi":"10.1109/TIFS.2025.3544067","DOIUrl":null,"url":null,"abstract":"The widespread use of modern network communications necessitates effective resource control and management in TCP/IP networks. However, most existing network traffic classification methods are limited to labeled known classes and struggle to handle open-set scenarios, where known classes coexist with significant volumes of unknown classes of traffic. To solve this problem more accurately and reliably, we propose RoNeTC. This method achieves high-precision classification by enhancing feature extraction and quantifying the reliability of classification decisions through uncertainty estimation. For feature extraction, we divide each packet of a flow into three views for parallel training, integrating both local and global feature representations across multiple packets to enhance accuracy. We devise a second-order classification probability to quantify the reliability of the classifier’s results and to visualize the reliability of open-set flow classification in terms of uncertainty. Additionally, we dynamically fuse classification decisions from multiple views, evaluating decision uncertainty to classify known and unknown flows and ensure robust, reliable results. We compare RoNeTC with four state-of-the-art (SOTA) methods in six open-set scenarios. RoNeTC outperforms the other methods by an average of 25.94% in F1 across all open-set scenarios, indicating its superior performance in open-set network traffic classification.","PeriodicalId":13492,"journal":{"name":"IEEE Transactions on Information Forensics and Security","volume":"20 ","pages":"2313-2328"},"PeriodicalIF":6.3000,"publicationDate":"2025-02-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Information Forensics and Security","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10900396/","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, THEORY & METHODS","Score":null,"Total":0}
引用次数: 0

Abstract

The widespread use of modern network communications necessitates effective resource control and management in TCP/IP networks. However, most existing network traffic classification methods are limited to labeled known classes and struggle to handle open-set scenarios, where known classes coexist with significant volumes of unknown classes of traffic. To solve this problem more accurately and reliably, we propose RoNeTC. This method achieves high-precision classification by enhancing feature extraction and quantifying the reliability of classification decisions through uncertainty estimation. For feature extraction, we divide each packet of a flow into three views for parallel training, integrating both local and global feature representations across multiple packets to enhance accuracy. We devise a second-order classification probability to quantify the reliability of the classifier’s results and to visualize the reliability of open-set flow classification in terms of uncertainty. Additionally, we dynamically fuse classification decisions from multiple views, evaluating decision uncertainty to classify known and unknown flows and ensure robust, reliable results. We compare RoNeTC with four state-of-the-art (SOTA) methods in six open-set scenarios. RoNeTC outperforms the other methods by an average of 25.94% in F1 across all open-set scenarios, indicating its superior performance in open-set network traffic classification.
求助全文
约1分钟内获得全文 求助全文
来源期刊
IEEE Transactions on Information Forensics and Security
IEEE Transactions on Information Forensics and Security 工程技术-工程:电子与电气
CiteScore
14.40
自引率
7.40%
发文量
234
审稿时长
6.5 months
期刊介绍: The IEEE Transactions on Information Forensics and Security covers the sciences, technologies, and applications relating to information forensics, information security, biometrics, surveillance and systems applications that incorporate these features
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信