Laura Pohlen, Emily García, Luz María Martínez, Noemí Flores, Jochen Büchs, Guillermo Gosset, Alvaro R. Lara
{"title":"Sigma Factors as Potential Targets to Enhance Recombinant Protein Expression","authors":"Laura Pohlen, Emily García, Luz María Martínez, Noemí Flores, Jochen Büchs, Guillermo Gosset, Alvaro R. Lara","doi":"10.1002/bit.28958","DOIUrl":null,"url":null,"abstract":"The transcriptional factors control the expression of many genes and represent an important layer of complexity in cell factories. However, the effect of individual sigma factor deletions from a biomanufacturing perspective has not been addressed. In this contribution, growth, green fluorescence protein (GFP) expression, and oxygen consumption of <i>Escherichia coli</i> BW25113 strains with individual inactivation of each sigma factor were characterized under various conditions. Specific growth rate, specific GFP fluorescence, and fluorescence emission rates were compared in a mineral media and in lysogeny broth at two temperatures. <i>rpoD</i> has been reported to be lethal for <i>E. coli</i>; however, the evaluated <i>rpoD</i> mutant did not exhibit major growth defects in the mineral medium. This is attributed to the presence of a second copy of <i>rpoD</i> in this strain. GFP was expressed at three different induction levels in a mineral and LB media. The <i>fliA</i> mutant was the best producer in the mineral medium, whereas the <i>rpoD</i> mutant overperformed the other strains in LB medium. This suggests that a lower <i>rpoD</i> gene dosage is positive for the performance of the cell factory in a complex medium. In cultures at 20°C, the <i>rpoS</i> mutant exhibited the greatest recombinant expression. To our knowledge, this is the first systematic study evaluating the potential of sigma factor deletion for improving recombinant protein production.","PeriodicalId":9168,"journal":{"name":"Biotechnology and Bioengineering","volume":"5 1","pages":""},"PeriodicalIF":3.5000,"publicationDate":"2025-02-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biotechnology and Bioengineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1002/bit.28958","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
The transcriptional factors control the expression of many genes and represent an important layer of complexity in cell factories. However, the effect of individual sigma factor deletions from a biomanufacturing perspective has not been addressed. In this contribution, growth, green fluorescence protein (GFP) expression, and oxygen consumption of Escherichia coli BW25113 strains with individual inactivation of each sigma factor were characterized under various conditions. Specific growth rate, specific GFP fluorescence, and fluorescence emission rates were compared in a mineral media and in lysogeny broth at two temperatures. rpoD has been reported to be lethal for E. coli; however, the evaluated rpoD mutant did not exhibit major growth defects in the mineral medium. This is attributed to the presence of a second copy of rpoD in this strain. GFP was expressed at three different induction levels in a mineral and LB media. The fliA mutant was the best producer in the mineral medium, whereas the rpoD mutant overperformed the other strains in LB medium. This suggests that a lower rpoD gene dosage is positive for the performance of the cell factory in a complex medium. In cultures at 20°C, the rpoS mutant exhibited the greatest recombinant expression. To our knowledge, this is the first systematic study evaluating the potential of sigma factor deletion for improving recombinant protein production.
期刊介绍:
Biotechnology & Bioengineering publishes Perspectives, Articles, Reviews, Mini-Reviews, and Communications to the Editor that embrace all aspects of biotechnology. These include:
-Enzyme systems and their applications, including enzyme reactors, purification, and applied aspects of protein engineering
-Animal-cell biotechnology, including media development
-Applied aspects of cellular physiology, metabolism, and energetics
-Biocatalysis and applied enzymology, including enzyme reactors, protein engineering, and nanobiotechnology
-Biothermodynamics
-Biofuels, including biomass and renewable resource engineering
-Biomaterials, including delivery systems and materials for tissue engineering
-Bioprocess engineering, including kinetics and modeling of biological systems, transport phenomena in bioreactors, bioreactor design, monitoring, and control
-Biosensors and instrumentation
-Computational and systems biology, including bioinformatics and genomic/proteomic studies
-Environmental biotechnology, including biofilms, algal systems, and bioremediation
-Metabolic and cellular engineering
-Plant-cell biotechnology
-Spectroscopic and other analytical techniques for biotechnological applications
-Synthetic biology
-Tissue engineering, stem-cell bioengineering, regenerative medicine, gene therapy and delivery systems
The editors will consider papers for publication based on novelty, their immediate or future impact on biotechnological processes, and their contribution to the advancement of biochemical engineering science. Submission of papers dealing with routine aspects of bioprocessing, description of established equipment, and routine applications of established methodologies (e.g., control strategies, modeling, experimental methods) is discouraged. Theoretical papers will be judged based on the novelty of the approach and their potential impact, or on their novel capability to predict and elucidate experimental observations.