Bernhard Spensberger, Ferdinand Stueckler, Marc Pompiati, Christoph Feistl, Thorsten Lemm, Roberto Falkenstein
{"title":"Multiple Use of Regenerated Depth Filters in Antibody Purification Processes","authors":"Bernhard Spensberger, Ferdinand Stueckler, Marc Pompiati, Christoph Feistl, Thorsten Lemm, Roberto Falkenstein","doi":"10.1002/bit.28957","DOIUrl":null,"url":null,"abstract":"During the manufacturing of therapeutic antibodies, disposable depth filters are used after affinity chromatography to remove haze and process-related impurities such as host cell proteins (HCP) and DNA known as critical quality attributes. The present study reports on the regeneration of depth filters allowing their reuse for at least 10 times while retaining sufficiently high clarification capacity. Three filter types were evaluated including standard cellulose-based and fully synthetic matrix materials using acidic or alkaline solutions in alternating cycles of loading and regeneration. Both alkaline and acidic solutions were effective, however, overall acidic regeneration of the filter material appeared superior for multiple use. This was especially evident for the silica-containing XOSP filter, where HCP and DNA were almost completely removed and remained low over 10 applications. Simultaneously preserved product quality indicated a high resistance of the filter matrix toward regeneration. These unexpected findings offer improved flexibility for available filter capacity in downstream processing along with ecologic advantages over the single use applications. Regarding the carbon footprint of the filtration process, calculated potential savings by a factor of four can be achieved, mainly accounting for reduced plastic waste. Therefore, depth filter reuse supports sustainability and carbon dioxide reduction during production processes.","PeriodicalId":9168,"journal":{"name":"Biotechnology and Bioengineering","volume":"65 1","pages":""},"PeriodicalIF":3.5000,"publicationDate":"2025-02-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biotechnology and Bioengineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1002/bit.28957","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
During the manufacturing of therapeutic antibodies, disposable depth filters are used after affinity chromatography to remove haze and process-related impurities such as host cell proteins (HCP) and DNA known as critical quality attributes. The present study reports on the regeneration of depth filters allowing their reuse for at least 10 times while retaining sufficiently high clarification capacity. Three filter types were evaluated including standard cellulose-based and fully synthetic matrix materials using acidic or alkaline solutions in alternating cycles of loading and regeneration. Both alkaline and acidic solutions were effective, however, overall acidic regeneration of the filter material appeared superior for multiple use. This was especially evident for the silica-containing XOSP filter, where HCP and DNA were almost completely removed and remained low over 10 applications. Simultaneously preserved product quality indicated a high resistance of the filter matrix toward regeneration. These unexpected findings offer improved flexibility for available filter capacity in downstream processing along with ecologic advantages over the single use applications. Regarding the carbon footprint of the filtration process, calculated potential savings by a factor of four can be achieved, mainly accounting for reduced plastic waste. Therefore, depth filter reuse supports sustainability and carbon dioxide reduction during production processes.
期刊介绍:
Biotechnology & Bioengineering publishes Perspectives, Articles, Reviews, Mini-Reviews, and Communications to the Editor that embrace all aspects of biotechnology. These include:
-Enzyme systems and their applications, including enzyme reactors, purification, and applied aspects of protein engineering
-Animal-cell biotechnology, including media development
-Applied aspects of cellular physiology, metabolism, and energetics
-Biocatalysis and applied enzymology, including enzyme reactors, protein engineering, and nanobiotechnology
-Biothermodynamics
-Biofuels, including biomass and renewable resource engineering
-Biomaterials, including delivery systems and materials for tissue engineering
-Bioprocess engineering, including kinetics and modeling of biological systems, transport phenomena in bioreactors, bioreactor design, monitoring, and control
-Biosensors and instrumentation
-Computational and systems biology, including bioinformatics and genomic/proteomic studies
-Environmental biotechnology, including biofilms, algal systems, and bioremediation
-Metabolic and cellular engineering
-Plant-cell biotechnology
-Spectroscopic and other analytical techniques for biotechnological applications
-Synthetic biology
-Tissue engineering, stem-cell bioengineering, regenerative medicine, gene therapy and delivery systems
The editors will consider papers for publication based on novelty, their immediate or future impact on biotechnological processes, and their contribution to the advancement of biochemical engineering science. Submission of papers dealing with routine aspects of bioprocessing, description of established equipment, and routine applications of established methodologies (e.g., control strategies, modeling, experimental methods) is discouraged. Theoretical papers will be judged based on the novelty of the approach and their potential impact, or on their novel capability to predict and elucidate experimental observations.