Zhuoyi Song, Bongmin Bae, Simon Schnabl, Fei Yuan, Thareendra De Zoysa, Maureen V. Akinyi, Charlotte A. Le Roux, Karine Choquet, Amanda J. Whipple, Eric L. Van Nostrand
{"title":"Mapping snoRNA-target RNA interactions in an RNA-binding protein-dependent manner with chimeric eCLIP","authors":"Zhuoyi Song, Bongmin Bae, Simon Schnabl, Fei Yuan, Thareendra De Zoysa, Maureen V. Akinyi, Charlotte A. Le Roux, Karine Choquet, Amanda J. Whipple, Eric L. Van Nostrand","doi":"10.1186/s13059-025-03508-7","DOIUrl":null,"url":null,"abstract":"Small nucleolar RNAs (snoRNAs) are non-coding RNAs that function in ribosome and spliceosome biogenesis, primarily by guiding modifying enzymes to specific sites on ribosomal RNA (rRNA) and spliceosomal RNA (snRNA). However, many orphan snoRNAs remain uncharacterized, with unidentified or unvalidated targets, and studies on additional snoRNA-associated proteins are limited. We adapted an enhanced chimeric eCLIP approach to comprehensively profile snoRNA-target RNA interactions using both core and accessory snoRNA-binding proteins as baits. Using core snoRNA-binding proteins, we confirmed most annotated snoRNA-rRNA and snoRNA-snRNA interactions in mouse and human cell lines and called novel, high-confidence interactions for orphan snoRNAs. While some of these interactions result in chemical modification, others may have modification-independent functions. We showed that snoRNA ribonucleoprotein complexes containing certain accessory proteins, like WDR43 and NOLC1, enriched for specific subsets of snoRNA-target RNA interactions with distinct roles in ribosome and spliceosome biogenesis. Notably, we discovered that SNORD89 guides 2′-O-methylation at two neighboring sites in U2 snRNA that fine-tune splice site recognition. Chimeric eCLIP of snoRNA-associating proteins enables a comprehensive framework for studying snoRNA-target interactions in an RNA-binding protein-dependent manner, revealing novel interactions and regulatory roles in RNA biogenesis.","PeriodicalId":12611,"journal":{"name":"Genome Biology","volume":"39 1","pages":""},"PeriodicalIF":10.1000,"publicationDate":"2025-02-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Genome Biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1186/s13059-025-03508-7","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Small nucleolar RNAs (snoRNAs) are non-coding RNAs that function in ribosome and spliceosome biogenesis, primarily by guiding modifying enzymes to specific sites on ribosomal RNA (rRNA) and spliceosomal RNA (snRNA). However, many orphan snoRNAs remain uncharacterized, with unidentified or unvalidated targets, and studies on additional snoRNA-associated proteins are limited. We adapted an enhanced chimeric eCLIP approach to comprehensively profile snoRNA-target RNA interactions using both core and accessory snoRNA-binding proteins as baits. Using core snoRNA-binding proteins, we confirmed most annotated snoRNA-rRNA and snoRNA-snRNA interactions in mouse and human cell lines and called novel, high-confidence interactions for orphan snoRNAs. While some of these interactions result in chemical modification, others may have modification-independent functions. We showed that snoRNA ribonucleoprotein complexes containing certain accessory proteins, like WDR43 and NOLC1, enriched for specific subsets of snoRNA-target RNA interactions with distinct roles in ribosome and spliceosome biogenesis. Notably, we discovered that SNORD89 guides 2′-O-methylation at two neighboring sites in U2 snRNA that fine-tune splice site recognition. Chimeric eCLIP of snoRNA-associating proteins enables a comprehensive framework for studying snoRNA-target interactions in an RNA-binding protein-dependent manner, revealing novel interactions and regulatory roles in RNA biogenesis.
Genome BiologyBiochemistry, Genetics and Molecular Biology-Genetics
CiteScore
21.00
自引率
3.30%
发文量
241
审稿时长
2 months
期刊介绍:
Genome Biology stands as a premier platform for exceptional research across all domains of biology and biomedicine, explored through a genomic and post-genomic lens.
With an impressive impact factor of 12.3 (2022),* the journal secures its position as the 3rd-ranked research journal in the Genetics and Heredity category and the 2nd-ranked research journal in the Biotechnology and Applied Microbiology category by Thomson Reuters. Notably, Genome Biology holds the distinction of being the highest-ranked open-access journal in this category.
Our dedicated team of highly trained in-house Editors collaborates closely with our esteemed Editorial Board of international experts, ensuring the journal remains on the forefront of scientific advances and community standards. Regular engagement with researchers at conferences and institute visits underscores our commitment to staying abreast of the latest developments in the field.