Haani Jafri, Samantha J Thomas, Sung Hoon Yang, Rachel E Cain, Matthew B Dalva
{"title":"Nano-organization of synapses defines synaptic release properties at cortical neuron dendritic spines.","authors":"Haani Jafri, Samantha J Thomas, Sung Hoon Yang, Rachel E Cain, Matthew B Dalva","doi":"10.1101/2025.02.13.637710","DOIUrl":null,"url":null,"abstract":"<p><p>Visualization of the submicron organization of excitatory synapses has revealed an unexpectedly ordered architecture consisting of nanocolumns of synaptic proteins that group into nanomodules which scale in number as spine size increases. How these features are related to synaptic function has remained unclear. Here, using super-resolution followed by live-cell line-scan imaging, we find that the size of the smallest miniature calcium and glutamate events are the same, regardless of whether spines have one or two nanopuncta of PSD-95, and that miniature synaptic response in all spines are best fit by a three term Poisson. Two nanomodule spines exhibit more large events without a significant change in event frequency, with the number of the largest events increasing disproportionately. These data support a model where nanomodules define sites of synaptic release and where the nanoarchitecture of synaptic proteins specifies subtypes of excitatory synapses, with increasing numbers of nanomodules increasing coordinated multivesicular release.</p>","PeriodicalId":519960,"journal":{"name":"bioRxiv : the preprint server for biology","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2025-03-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11844459/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"bioRxiv : the preprint server for biology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1101/2025.02.13.637710","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Visualization of the submicron organization of excitatory synapses has revealed an unexpectedly ordered architecture consisting of nanocolumns of synaptic proteins that group into nanomodules which scale in number as spine size increases. How these features are related to synaptic function has remained unclear. Here, using super-resolution followed by live-cell line-scan imaging, we find that the size of the smallest miniature calcium and glutamate events are the same, regardless of whether spines have one or two nanopuncta of PSD-95, and that miniature synaptic response in all spines are best fit by a three term Poisson. Two nanomodule spines exhibit more large events without a significant change in event frequency, with the number of the largest events increasing disproportionately. These data support a model where nanomodules define sites of synaptic release and where the nanoarchitecture of synaptic proteins specifies subtypes of excitatory synapses, with increasing numbers of nanomodules increasing coordinated multivesicular release.