Fructose-2,6-bisphosphate restores TDP-43 pathology-driven genome repair deficiency in motor neuron diseases.

Anirban Chakraborty, Joy Mitra, Vikas H Malojirao, Manohar Kodavati, Santi M Mandal, Satkarjeet K Gill, Sravan Gopalkrishnashetty Sreenivasmurthy, Velmarini Vasquez, Mikita Mankevich, Balaji Krishnan, Gourisankar Ghosh, Muralidhar Hegde, Tapas Hazra
{"title":"Fructose-2,6-bisphosphate restores TDP-43 pathology-driven genome repair deficiency in motor neuron diseases.","authors":"Anirban Chakraborty, Joy Mitra, Vikas H Malojirao, Manohar Kodavati, Santi M Mandal, Satkarjeet K Gill, Sravan Gopalkrishnashetty Sreenivasmurthy, Velmarini Vasquez, Mikita Mankevich, Balaji Krishnan, Gourisankar Ghosh, Muralidhar Hegde, Tapas Hazra","doi":"10.1101/2024.11.13.623464","DOIUrl":null,"url":null,"abstract":"<p><p>TAR DNA-binding protein 43 (TDP-43) proteinopathy plays a critical role in neurodegenerative diseases, including amyotrophic lateral sclerosis and frontotemporal dementia (FTD). In our recent discovery, we identified that TDP-43 plays an essential role in DNA double-strand break (DSB) repair via the non-homologous end joining (NHEJ) pathway. Here, we found persistent DNA damage in the brains of ALS/FTD patients, primarily in the transcribed regions of the genome. We further investigated the underlying mechanism and found that polynucleotide kinase 3'-phosphatase (PNKP) activity was severely impaired in the nuclear extracts of both patient brains and TDP-43-depleted cells. PNKP is a key player in DSB repair within the transcribed genome, where its 3'-P termini processing activity is crucial for preventing persistent DNA damage and neuronal death. The inactivation of PNKP in ALS/FTD was due to reduced levels of its interacting partner, phosphofructo-2-kinase fructose 2,6 bisphosphatase (PFKFB3), and its biosynthetic product, fructose-2,6-bisphosphate (F2,6BP), an allosteric modulator of glycolysis. Recent work from our group has shown that F2,6BP acts as a positive modulator of PNKP activity in vivo. Notably, exogenous supplementation with F2,6BP restored PNKP activity in nuclear extracts from ALS/FTD brain samples and patient-derived induced pluripotent stem (iPS) cells harboring pathological mutations. Furthermore, we demonstrate that supplementation of F2,6BP restores genome integrity and partially rescues motor phenotype in a Drosophila model of ALS. Our findings underscore the possibility of exploring the therapeutic potential of F2,6BP or its analogs in TDP-43 pathology-associated motor neuron diseases.</p>","PeriodicalId":519960,"journal":{"name":"bioRxiv : the preprint server for biology","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2025-04-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11844424/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"bioRxiv : the preprint server for biology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1101/2024.11.13.623464","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

TAR DNA-binding protein 43 (TDP-43) proteinopathy plays a critical role in neurodegenerative diseases, including amyotrophic lateral sclerosis and frontotemporal dementia (FTD). In our recent discovery, we identified that TDP-43 plays an essential role in DNA double-strand break (DSB) repair via the non-homologous end joining (NHEJ) pathway. Here, we found persistent DNA damage in the brains of ALS/FTD patients, primarily in the transcribed regions of the genome. We further investigated the underlying mechanism and found that polynucleotide kinase 3'-phosphatase (PNKP) activity was severely impaired in the nuclear extracts of both patient brains and TDP-43-depleted cells. PNKP is a key player in DSB repair within the transcribed genome, where its 3'-P termini processing activity is crucial for preventing persistent DNA damage and neuronal death. The inactivation of PNKP in ALS/FTD was due to reduced levels of its interacting partner, phosphofructo-2-kinase fructose 2,6 bisphosphatase (PFKFB3), and its biosynthetic product, fructose-2,6-bisphosphate (F2,6BP), an allosteric modulator of glycolysis. Recent work from our group has shown that F2,6BP acts as a positive modulator of PNKP activity in vivo. Notably, exogenous supplementation with F2,6BP restored PNKP activity in nuclear extracts from ALS/FTD brain samples and patient-derived induced pluripotent stem (iPS) cells harboring pathological mutations. Furthermore, we demonstrate that supplementation of F2,6BP restores genome integrity and partially rescues motor phenotype in a Drosophila model of ALS. Our findings underscore the possibility of exploring the therapeutic potential of F2,6BP or its analogs in TDP-43 pathology-associated motor neuron diseases.

果糖-2,6-二磷酸恢复运动神经元疾病中TDP-43病理驱动的基因组修复缺陷。
TAR dna结合蛋白43 (TDP-43)蛋白病变在神经退行性疾病中起关键作用,包括肌萎缩侧索硬化症和额颞叶痴呆(FTD)。在我们最近的发现中,我们发现TDP-43通过非同源末端连接(NHEJ)途径在DNA双链断裂(DSB)修复中起重要作用。在这里,我们发现ALS/FTD患者的大脑中存在持续的DNA损伤,主要是在基因组的转录区域。我们进一步研究了潜在的机制,发现多核苷酸激酶3′-磷酸酶(PNKP)活性在患者大脑和tdp -43缺失细胞的核提取物中严重受损。PNKP是转录基因组中DSB修复的关键参与者,其3'-P末端加工活性对于防止持续DNA损伤和神经元死亡至关重要。PNKP在ALS/FTD中的失活是由于其相互作用伙伴磷酸果糖-2-激酶果糖2,6双磷酸酶(PFKFB3)及其生物合成产物果糖-2,6-二磷酸(F2,6BP)的水平降低,果糖-2,6-二磷酸是糖酵解的变构调节剂。我们小组最近的工作表明,F2,6BP在体内作为PNKP活性的正向调节剂。值得注意的是,外源性补充F2,6BP可以恢复ALS/FTD脑样本和患者来源的诱导多能干细胞(iPS)的核提取物中PNKP的活性。此外,我们证明补充F2,6BP可以恢复基因组完整性,并部分恢复果蝇ALS模型的运动表型。我们的发现强调了探索F2、6BP或其类似物在TDP-43病理相关运动神经元疾病中的治疗潜力的可能性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信