Jointly representing long-range genetic similarity and spatially heterogeneous isolation-by-distance.

Vivaswat Shastry, Marco Musiani, John Novembre
{"title":"Jointly representing long-range genetic similarity and spatially heterogeneous isolation-by-distance.","authors":"Vivaswat Shastry, Marco Musiani, John Novembre","doi":"10.1101/2025.02.10.637386","DOIUrl":null,"url":null,"abstract":"<p><p>Isolation-by-distance patterns in genetic variation are a widespread feature of the geographic structure of genetic variation in many species, and many methods have been developed to illuminate such patterns in genetic data. However, long-range genetic similarities also exist, often as a result of rare or episodic long-range gene flow. Jointly characterizing patterns of isolation-by-distance and long-range genetic similarity in genetic data is an open data analysis challenge that, if resolved, could help produce more complete representations of the geographic structure of genetic data in any given species. Here, we present a computationally tractable method that identifies long-range genetic similarities in a background of spatially heterogeneous isolation-by-distance variation. The method uses a coalescent-based framework, and models long-range genetic similarity in terms of directional events with source fractions describing the fraction of ancestry at a location tracing back to a remote source. The method produces geographic maps annotated with inferred long-range edges, as well as maps of uncertainty in the geographic location of each source of long-range gene flow. We have implemented the method in a package called FEEMSmix (an extension to FEEMS from Marcus et al 2021), and validated its implementation using simulations representative of typical data applications. We also apply this method to two empirical data sets. In a data set of over 4,000 humans (Homo sapiens) across Afro-Eurasia, we recover many known signals of long-distance dispersal from recent centuries. Similarly, in a data set of over 100 gray wolves (Canis lupus) across North America, we identify several previously unknown long-range connections, some of which were attributable to recording errors in sampling locations. Therefore, beyond identifying genuine long-range dispersals, our approach also serves as a useful tool for quality control in spatial genetic studies.</p>","PeriodicalId":519960,"journal":{"name":"bioRxiv : the preprint server for biology","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2025-03-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11844421/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"bioRxiv : the preprint server for biology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1101/2025.02.10.637386","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Isolation-by-distance patterns in genetic variation are a widespread feature of the geographic structure of genetic variation in many species, and many methods have been developed to illuminate such patterns in genetic data. However, long-range genetic similarities also exist, often as a result of rare or episodic long-range gene flow. Jointly characterizing patterns of isolation-by-distance and long-range genetic similarity in genetic data is an open data analysis challenge that, if resolved, could help produce more complete representations of the geographic structure of genetic data in any given species. Here, we present a computationally tractable method that identifies long-range genetic similarities in a background of spatially heterogeneous isolation-by-distance variation. The method uses a coalescent-based framework, and models long-range genetic similarity in terms of directional events with source fractions describing the fraction of ancestry at a location tracing back to a remote source. The method produces geographic maps annotated with inferred long-range edges, as well as maps of uncertainty in the geographic location of each source of long-range gene flow. We have implemented the method in a package called FEEMSmix (an extension to FEEMS from Marcus et al 2021), and validated its implementation using simulations representative of typical data applications. We also apply this method to two empirical data sets. In a data set of over 4,000 humans (Homo sapiens) across Afro-Eurasia, we recover many known signals of long-distance dispersal from recent centuries. Similarly, in a data set of over 100 gray wolves (Canis lupus) across North America, we identify several previously unknown long-range connections, some of which were attributable to recording errors in sampling locations. Therefore, beyond identifying genuine long-range dispersals, our approach also serves as a useful tool for quality control in spatial genetic studies.

求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信