Reversal of metformin's anti-proliferative effect in fission yeast efr3 and dnm1 (DRP1) mutants with elongated mitochondria.

npj Metabolic Health and Disease Pub Date : 2025-01-01 Epub Date: 2025-02-21 DOI:10.1038/s44324-024-00048-9
Ari Gillespie, Anne-Sophie Mehdorn, Tiffany Q Lim, Tingting Wang, Bridget A Mooney, Ashley J Ovens, Ayla Orang, Jonathan S Oakhill, Michael Z Michael, Janni Petersen
{"title":"Reversal of metformin's anti-proliferative effect in fission yeast <i>efr3</i> and <i>dnm1</i> (DRP1) mutants with elongated mitochondria.","authors":"Ari Gillespie, Anne-Sophie Mehdorn, Tiffany Q Lim, Tingting Wang, Bridget A Mooney, Ashley J Ovens, Ayla Orang, Jonathan S Oakhill, Michael Z Michael, Janni Petersen","doi":"10.1038/s44324-024-00048-9","DOIUrl":null,"url":null,"abstract":"<p><p>Metformin is a well-tolerated drug frequently prescribed for managing type 2 diabetes. Extended metformin use has been linked to a significant decrease in cancer incidence across both diabetic and non-diabetic populations. Here we investigate the anti-proliferative effects of metformin on fission yeast <i>S. pombe</i>. Our findings demonstrate that metformin's inhibitory impact on cell proliferation is effective in the absence of AMP-activated protein kinase (AMPK). Using an unbiased genetic screen we identified the plasma membrane signalling scaffold Efr3, critical for phosphatidylinositol signalling and the generation of PI4Ps, as a key determinant of resistance to the anti-proliferative effect of metformin. Deletion of <i>efr3</i> resulted in both AMPK-dependent and AMPK-independent resistance to metformin. We show that Efr3 does not influence cell proliferation by controlling Ras1 activity or its cellular localization in yeast. We observe that <i>dnm1</i> (DRP1) mutants with elongated mitochondria are also resistant to the anti-proliferative effect of metformin and that metformin treatment promotes mitochondrial fusion. Metabolic measurements after prolonged metformin exposure demonstrated a reduction in respiration in both wild type and the <i>efr3</i> deletion, however, that reduction is less pronounced in the <i>efr3</i> deletion, which also contained elongated mitochondria. It is likely that mitochondrial fusion enhances yeast fitness in response to metformin exposure. Together we provide a new perspective on the cellular response to metformin.</p>","PeriodicalId":501710,"journal":{"name":"npj Metabolic Health and Disease","volume":"3 1","pages":"5"},"PeriodicalIF":0.0000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11845315/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"npj Metabolic Health and Disease","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1038/s44324-024-00048-9","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/2/21 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Metformin is a well-tolerated drug frequently prescribed for managing type 2 diabetes. Extended metformin use has been linked to a significant decrease in cancer incidence across both diabetic and non-diabetic populations. Here we investigate the anti-proliferative effects of metformin on fission yeast S. pombe. Our findings demonstrate that metformin's inhibitory impact on cell proliferation is effective in the absence of AMP-activated protein kinase (AMPK). Using an unbiased genetic screen we identified the plasma membrane signalling scaffold Efr3, critical for phosphatidylinositol signalling and the generation of PI4Ps, as a key determinant of resistance to the anti-proliferative effect of metformin. Deletion of efr3 resulted in both AMPK-dependent and AMPK-independent resistance to metformin. We show that Efr3 does not influence cell proliferation by controlling Ras1 activity or its cellular localization in yeast. We observe that dnm1 (DRP1) mutants with elongated mitochondria are also resistant to the anti-proliferative effect of metformin and that metformin treatment promotes mitochondrial fusion. Metabolic measurements after prolonged metformin exposure demonstrated a reduction in respiration in both wild type and the efr3 deletion, however, that reduction is less pronounced in the efr3 deletion, which also contained elongated mitochondria. It is likely that mitochondrial fusion enhances yeast fitness in response to metformin exposure. Together we provide a new perspective on the cellular response to metformin.

逆转二甲双胍在线粒体拉长的裂殖酵母efr3和dnm1(DRP1)突变体中的抗增殖作用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信