Persistent Sheaf Laplacian Analysis of Protein Flexibility.

ArXiv Pub Date : 2025-03-30
Nicole Hayes, Xiaoqi Wei, Hongsong Feng, Ekaterina Merkurjev, Guo-Wei Wei
{"title":"Persistent Sheaf Laplacian Analysis of Protein Flexibility.","authors":"Nicole Hayes, Xiaoqi Wei, Hongsong Feng, Ekaterina Merkurjev, Guo-Wei Wei","doi":"","DOIUrl":null,"url":null,"abstract":"<p><p>Protein flexibility, measured by the B-factor or Debye-Waller factor, is essential for protein functions such as structural support, enzyme activity, cellular communication, and molecular transport. Theoretical analysis and prediction of protein flexibility are crucial for protein design, engineering, and drug discovery. In this work, we introduce the persistent sheaf Laplacian (PSL), an effective tool in topological data analysis, to model and analyze protein flexibility. By representing the local topology and geometry of protein atoms through the multiscale harmonic and non-harmonic spectra of PSLs, the proposed model effectively captures protein flexibility and provides accurate, robust predictions of protein B-factors. Our PSL model demonstrates an increase in accuracy of 32% compared to the classical Gaussian network model (GNM) in predicting B-factors for a dataset of 364 proteins. Additionally, we construct a blind machine learning prediction method utilizing global and local protein features. Extensive computations and comparisons validate the effectiveness of the proposed PSL model for B-factor predictions.</p>","PeriodicalId":93888,"journal":{"name":"ArXiv","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2025-03-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11844605/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ArXiv","FirstCategoryId":"1085","ListUrlMain":"","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Protein flexibility, measured by the B-factor or Debye-Waller factor, is essential for protein functions such as structural support, enzyme activity, cellular communication, and molecular transport. Theoretical analysis and prediction of protein flexibility are crucial for protein design, engineering, and drug discovery. In this work, we introduce the persistent sheaf Laplacian (PSL), an effective tool in topological data analysis, to model and analyze protein flexibility. By representing the local topology and geometry of protein atoms through the multiscale harmonic and non-harmonic spectra of PSLs, the proposed model effectively captures protein flexibility and provides accurate, robust predictions of protein B-factors. Our PSL model demonstrates an increase in accuracy of 32% compared to the classical Gaussian network model (GNM) in predicting B-factors for a dataset of 364 proteins. Additionally, we construct a blind machine learning prediction method utilizing global and local protein features. Extensive computations and comparisons validate the effectiveness of the proposed PSL model for B-factor predictions.

蛋白质柔韧性的持续束拉普拉斯分析。
由b因子或德拜-沃勒因子测量的蛋白质柔韧性,对于蛋白质的结构支持、酶活性、细胞通讯和分子运输等功能至关重要。蛋白质柔韧性的理论分析和预测对蛋白质设计、工程和药物发现至关重要。在这项工作中,我们引入了持久束拉普拉斯算子(PSL),这是一种有效的拓扑数据分析工具,用于建模和分析蛋白质的灵活性。通过PSLs的多尺度谐波和非谐波光谱来表示蛋白质原子的局部拓扑结构和几何形状,该模型有效地捕获了蛋白质的灵活性,并提供了准确、稳健的蛋白质b因子预测。与经典高斯网络模型(GNM)相比,我们的PSL模型在预测364种蛋白质数据集的b因子方面的准确性提高了32%。此外,我们构建了一种利用全局和局部蛋白质特征的盲机器学习预测方法。大量的计算和比较验证了所提出的PSL模型对b因子预测的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信