Optimizing Global Genomic Surveillance for Early Detection of Emerging SARS-CoV-2 Variants.

ArXiv Pub Date : 2025-02-13
Haogao Gu, Jifan Li, Wanying Sun, Mengting Li, Kathy Leung, Joseph T Wu, Hsiang-Yu Yuan, Maggie H Wang, Bingyi Yang, Matthew R McKay, Ning Ning, Leo L M Poon
{"title":"Optimizing Global Genomic Surveillance for Early Detection of Emerging SARS-CoV-2 Variants.","authors":"Haogao Gu, Jifan Li, Wanying Sun, Mengting Li, Kathy Leung, Joseph T Wu, Hsiang-Yu Yuan, Maggie H Wang, Bingyi Yang, Matthew R McKay, Ning Ning, Leo L M Poon","doi":"","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Global viral threats underscore the need for effective genomic surveillance, but high costs and uneven resource distribution hamper its implementation. Targeting surveillance to international travelers in major travel hubs may offer a more efficient strategy for the early detection of SARS-CoV-2 variants.</p><p><strong>Methods: </strong>We developed and calibrated a multiple-strain metapopulation model of global SARS-CoV-2 transmission using extensive epidemiological, phylogenetic, and high-resolution air travel data. We then compared baseline surveillance with various resource-allocation approaches that prioritize travelers, focusing on Omicron BA.1/BA.2 retrospectively and on hypothetical future variants under different emergence, transmission and vaccine effectiveness scenarios.</p><p><strong>Findings: </strong>Focusing existing surveillance resources on travelers at key global hubs significantly shortened detection delays without increasing total surveillance efforts. In retrospective analyses of Omicron BA.1/BA.2, traveler-targeted approaches consistently outperformed baseline strategies, even when overall resources were reduced. Simulations indicate that focusing surveillance on key travel hubs outperform baseline practices in detecting future variants, across different possible origins, even with reduced resources. This approach also remains effective in future pandemic scenarios with varying reproductive numbers and vaccine effectiveness.</p><p><strong>Interpretation: </strong>These findings provide a quantitative, cost-effective framework for strengthening global genomic surveillance. By reallocating resources toward international travelers in select travel hubs, early detection of emerging variants can be enhanced, informing rapid public health interventions and bolstering preparedness for future pandemics.</p>","PeriodicalId":93888,"journal":{"name":"ArXiv","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2025-02-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11844623/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ArXiv","FirstCategoryId":"1085","ListUrlMain":"","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Background: Global viral threats underscore the need for effective genomic surveillance, but high costs and uneven resource distribution hamper its implementation. Targeting surveillance to international travelers in major travel hubs may offer a more efficient strategy for the early detection of SARS-CoV-2 variants.

Methods: We developed and calibrated a multiple-strain metapopulation model of global SARS-CoV-2 transmission using extensive epidemiological, phylogenetic, and high-resolution air travel data. We then compared baseline surveillance with various resource-allocation approaches that prioritize travelers, focusing on Omicron BA.1/BA.2 retrospectively and on hypothetical future variants under different emergence, transmission and vaccine effectiveness scenarios.

Findings: Focusing existing surveillance resources on travelers at key global hubs significantly shortened detection delays without increasing total surveillance efforts. In retrospective analyses of Omicron BA.1/BA.2, traveler-targeted approaches consistently outperformed baseline strategies, even when overall resources were reduced. Simulations indicate that focusing surveillance on key travel hubs outperform baseline practices in detecting future variants, across different possible origins, even with reduced resources. This approach also remains effective in future pandemic scenarios with varying reproductive numbers and vaccine effectiveness.

Interpretation: These findings provide a quantitative, cost-effective framework for strengthening global genomic surveillance. By reallocating resources toward international travelers in select travel hubs, early detection of emerging variants can be enhanced, informing rapid public health interventions and bolstering preparedness for future pandemics.

求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信