CausalGeD: Blending Causality and Diffusion for Spatial Gene Expression Generation.

ArXiv Pub Date : 2025-02-11
Rabeya Tus Sadia, Md Atik Ahamed, Qiang Cheng
{"title":"CausalGeD: Blending Causality and Diffusion for Spatial Gene Expression Generation.","authors":"Rabeya Tus Sadia, Md Atik Ahamed, Qiang Cheng","doi":"","DOIUrl":null,"url":null,"abstract":"<p><p>The integration of single-cell RNA sequencing (scRNA-seq) and spatial transcriptomics (ST) data is crucial for understanding gene expression in spatial context. Existing methods for such integration have limited performance, with structural similarity often below 60\\%, We attribute this limitation to the failure to consider causal relationships between genes. We present CausalGeD, which combines diffusion and autoregressive processes to leverage these relationships. By generalizing the Causal Attention Transformer from image generation to gene expression data, our model captures regulatory mechanisms without predefined relationships. Across 10 tissue datasets, CausalGeD outperformed state-of-the-art baselines by 5- 32\\% in key metrics, including Pearson's correlation and structural similarity, advancing both technical and biological insights.</p>","PeriodicalId":93888,"journal":{"name":"ArXiv","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2025-02-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11844633/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ArXiv","FirstCategoryId":"1085","ListUrlMain":"","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The integration of single-cell RNA sequencing (scRNA-seq) and spatial transcriptomics (ST) data is crucial for understanding gene expression in spatial context. Existing methods for such integration have limited performance, with structural similarity often below 60\%, We attribute this limitation to the failure to consider causal relationships between genes. We present CausalGeD, which combines diffusion and autoregressive processes to leverage these relationships. By generalizing the Causal Attention Transformer from image generation to gene expression data, our model captures regulatory mechanisms without predefined relationships. Across 10 tissue datasets, CausalGeD outperformed state-of-the-art baselines by 5- 32\% in key metrics, including Pearson's correlation and structural similarity, advancing both technical and biological insights.

求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信