Dynamics of bacterial growth, and life-history tradeoffs, explain differences in soil carbon cycling due to land-use.

IF 5.1 Q1 ECOLOGY
ISME communications Pub Date : 2025-01-30 eCollection Date: 2025-01-01 DOI:10.1093/ismeco/ycaf014
Cassandra J Wattenburger, Evangeline Wang, Daniel H Buckley
{"title":"Dynamics of bacterial growth, and life-history tradeoffs, explain differences in soil carbon cycling due to land-use.","authors":"Cassandra J Wattenburger, Evangeline Wang, Daniel H Buckley","doi":"10.1093/ismeco/ycaf014","DOIUrl":null,"url":null,"abstract":"<p><p>Soil contains a considerable fraction of Earth's organic carbon. Bacterial growth and mortality drive the microbial carbon pump, influencing carbon use efficiency and necromass production, key determinants for organic carbon persistence in soils. However, bacterial growth dynamics in soil are poorly characterized. We used an internal standard approach to normalize 16S ribosomal RNA gene sequencing data allowing us to quantify growth dynamics for 30 days following plant litter input to soil. We show that clustering taxa into three groups optimized variation of bacterial growth parameters in situ. These three clusters differed significantly with respect to their lag time, growth rate, growth duration, and change in abundance due to growth (ΔN<sub>g</sub>) and mortality (ΔN<sub>d</sub>), matching predictions of Grime's CSR life-history framework. In addition, we show a striking relationship between ΔN<sub>g</sub> and ΔN<sub>d</sub>, which reveals that growth in soil is tightly coupled to death. This result suggests a fitness paradox whereby some bacteria can optimize fitness in soil by minimizing mortality rather than maximizing growth. We hypothesized that land-use constrains microbial growth dynamics by favoring different life-history strategies and that these constraints control carbon mineralization. We show that life-history groups vary in prevalence with respect to land-use, and that bacterial growth dynamics correlated with carbon mineralization rate and net growth efficiency. Meadow soil supported more bacterial growth, greater mortality, and higher growth efficiency than agricultural soils, pointing toward more efficient conversion of plant litter into microbial necromass, which should promote long-term C stabilization.</p>","PeriodicalId":73516,"journal":{"name":"ISME communications","volume":"5 1","pages":"ycaf014"},"PeriodicalIF":5.1000,"publicationDate":"2025-01-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11844245/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ISME communications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1093/ismeco/ycaf014","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"ECOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Soil contains a considerable fraction of Earth's organic carbon. Bacterial growth and mortality drive the microbial carbon pump, influencing carbon use efficiency and necromass production, key determinants for organic carbon persistence in soils. However, bacterial growth dynamics in soil are poorly characterized. We used an internal standard approach to normalize 16S ribosomal RNA gene sequencing data allowing us to quantify growth dynamics for 30 days following plant litter input to soil. We show that clustering taxa into three groups optimized variation of bacterial growth parameters in situ. These three clusters differed significantly with respect to their lag time, growth rate, growth duration, and change in abundance due to growth (ΔNg) and mortality (ΔNd), matching predictions of Grime's CSR life-history framework. In addition, we show a striking relationship between ΔNg and ΔNd, which reveals that growth in soil is tightly coupled to death. This result suggests a fitness paradox whereby some bacteria can optimize fitness in soil by minimizing mortality rather than maximizing growth. We hypothesized that land-use constrains microbial growth dynamics by favoring different life-history strategies and that these constraints control carbon mineralization. We show that life-history groups vary in prevalence with respect to land-use, and that bacterial growth dynamics correlated with carbon mineralization rate and net growth efficiency. Meadow soil supported more bacterial growth, greater mortality, and higher growth efficiency than agricultural soils, pointing toward more efficient conversion of plant litter into microbial necromass, which should promote long-term C stabilization.

求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信