Deep learning methods for clinical workflow phase-based prediction of procedure duration: a benchmark study.

IF 1.5 4区 医学 Q3 SURGERY
Computer Assisted Surgery Pub Date : 2025-12-01 Epub Date: 2025-02-24 DOI:10.1080/24699322.2025.2466426
Emanuele Frassini, Teddy S Vijfvinkel, Rick M Butler, Maarten van der Elst, Benno H W Hendriks, John J van den Dobbelsteen
{"title":"Deep learning methods for clinical workflow phase-based prediction of procedure duration: a benchmark study.","authors":"Emanuele Frassini, Teddy S Vijfvinkel, Rick M Butler, Maarten van der Elst, Benno H W Hendriks, John J van den Dobbelsteen","doi":"10.1080/24699322.2025.2466426","DOIUrl":null,"url":null,"abstract":"<p><p>This study evaluates the performance of deep learning models in the prediction of the end time of procedures performed in the cardiac catheterization laboratory (cath lab). We employed only the clinical phases derived from video analysis as input to the algorithms. Our results show that InceptionTime and LSTM-FCN yielded the most accurate predictions. InceptionTime achieves Mean Absolute Error (MAE) values below 5 min and Symmetric Mean Absolute Percentage Error (SMAPE) under 6% at 60-s sampling intervals. In contrast, LSTM with attention mechanism and standard LSTM models have higher error rates, indicating challenges in handling both long-term and short-term dependencies. CNN-based models, especially InceptionTime, excel at feature extraction across different scales, making them effective for time-series predictions. We also analyzed training and testing times. CNN models, despite higher computational costs, significantly reduce prediction errors. The Transformer model has the fastest inference time, making it ideal for real-time applications. An ensemble model derived by averaging the two best performing algorithms reported low MAE and SMAPE, although needing longer training. Future research should validate these findings across different procedural contexts and explore ways to optimize training times without losing accuracy. Integrating these models into clinical scheduling systems could improve efficiency in cath labs. Our research demonstrates that the models we implemented can form the basis of an automated tool, which predicts the optimal time to call the next patient with an average error of approximately 30 s. These findings show the effectiveness of deep learning models, especially CNN-based architectures, in accurately predicting procedure end times.</p>","PeriodicalId":56051,"journal":{"name":"Computer Assisted Surgery","volume":"30 1","pages":"2466426"},"PeriodicalIF":1.5000,"publicationDate":"2025-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computer Assisted Surgery","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1080/24699322.2025.2466426","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/2/24 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"SURGERY","Score":null,"Total":0}
引用次数: 0

Abstract

This study evaluates the performance of deep learning models in the prediction of the end time of procedures performed in the cardiac catheterization laboratory (cath lab). We employed only the clinical phases derived from video analysis as input to the algorithms. Our results show that InceptionTime and LSTM-FCN yielded the most accurate predictions. InceptionTime achieves Mean Absolute Error (MAE) values below 5 min and Symmetric Mean Absolute Percentage Error (SMAPE) under 6% at 60-s sampling intervals. In contrast, LSTM with attention mechanism and standard LSTM models have higher error rates, indicating challenges in handling both long-term and short-term dependencies. CNN-based models, especially InceptionTime, excel at feature extraction across different scales, making them effective for time-series predictions. We also analyzed training and testing times. CNN models, despite higher computational costs, significantly reduce prediction errors. The Transformer model has the fastest inference time, making it ideal for real-time applications. An ensemble model derived by averaging the two best performing algorithms reported low MAE and SMAPE, although needing longer training. Future research should validate these findings across different procedural contexts and explore ways to optimize training times without losing accuracy. Integrating these models into clinical scheduling systems could improve efficiency in cath labs. Our research demonstrates that the models we implemented can form the basis of an automated tool, which predicts the optimal time to call the next patient with an average error of approximately 30 s. These findings show the effectiveness of deep learning models, especially CNN-based architectures, in accurately predicting procedure end times.

基于临床工作流程阶段的程序持续时间预测的深度学习方法:一项基准研究。
本研究评估了深度学习模型在心导管实验室(cath lab)中预测手术结束时间的性能。我们只采用从视频分析中得出的临床阶段作为算法的输入。我们的结果表明,InceptionTime和LSTM-FCN产生了最准确的预测。在60秒的采样间隔内,InceptionTime实现平均绝对误差(MAE)小于5分钟,对称平均绝对百分比误差(SMAPE)小于6%。相比之下,具有注意机制的LSTM和标准LSTM模型的错误率更高,这表明在处理长期和短期依赖关系方面都存在挑战。基于cnn的模型,尤其是InceptionTime,擅长于不同尺度的特征提取,这使得它们对时间序列预测有效。我们还分析了训练和测试时间。CNN模型尽管计算成本较高,但显著降低了预测误差。Transformer模型具有最快的推理时间,使其成为实时应用程序的理想选择。通过平均两种表现最好的算法得出的集成模型报告了低MAE和SMAPE,尽管需要更长的训练时间。未来的研究应该在不同的程序背景下验证这些发现,并探索在不失去准确性的情况下优化训练时间的方法。将这些模型集成到临床调度系统中可以提高导管室的效率。我们的研究表明,我们实现的模型可以形成一个自动化工具的基础,该工具预测呼叫下一个患者的最佳时间,平均误差约为30秒。这些发现表明,深度学习模型,特别是基于cnn的架构,在准确预测过程结束时间方面是有效的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Computer Assisted Surgery
Computer Assisted Surgery Medicine-Surgery
CiteScore
2.30
自引率
0.00%
发文量
13
审稿时长
10 weeks
期刊介绍: omputer Assisted Surgery aims to improve patient care by advancing the utilization of computers during treatment; to evaluate the benefits and risks associated with the integration of advanced digital technologies into surgical practice; to disseminate clinical and basic research relevant to stereotactic surgery, minimal access surgery, endoscopy, and surgical robotics; to encourage interdisciplinary collaboration between engineers and physicians in developing new concepts and applications; to educate clinicians about the principles and techniques of computer assisted surgery and therapeutics; and to serve the international scientific community as a medium for the transfer of new information relating to theory, research, and practice in biomedical imaging and the surgical specialties. The scope of Computer Assisted Surgery encompasses all fields within surgery, as well as biomedical imaging and instrumentation, and digital technology employed as an adjunct to imaging in diagnosis, therapeutics, and surgery. Topics featured include frameless as well as conventional stereotactic procedures, surgery guided by intraoperative ultrasound or magnetic resonance imaging, image guided focused irradiation, robotic surgery, and any therapeutic interventions performed with the use of digital imaging technology.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信