Unraveling the influence of microbial necromass on subsurface microbiomes: metabolite utilization and community dynamics.

IF 5.1 Q1 ECOLOGY
ISME communications Pub Date : 2025-01-29 eCollection Date: 2025-01-01 DOI:10.1093/ismeco/ycaf006
Brianna K Finley, Brandon C Enalls, Markus de Raad, Mariam Al Said, Mingfei Chen, Dominique C Joyner, Terry C Hazen, Trent R Northen, Romy Chakraborty
{"title":"Unraveling the influence of microbial necromass on subsurface microbiomes: metabolite utilization and community dynamics.","authors":"Brianna K Finley, Brandon C Enalls, Markus de Raad, Mariam Al Said, Mingfei Chen, Dominique C Joyner, Terry C Hazen, Trent R Northen, Romy Chakraborty","doi":"10.1093/ismeco/ycaf006","DOIUrl":null,"url":null,"abstract":"<p><p>The role of microbial necromass (nonliving microbial biomass), a significant component of belowground organic carbon, in nutrient cycling and its impact on the dynamics of microbial communities in subsurface systems remains poorly understood. It is currently unclear whether necromass metabolites from various microbes are different, whether certain groups of metabolites are preferentially utilized over others, or whether different microbial species respond to various necromass metabolites. In this study, we aimed to fill these knowledge gaps by designing enrichments with necromass as the sole nutrient source for subsurface microbial communities. We used the soluble fraction of necromass from bacterial isolates belonging to <i>Arthrobacter</i>, <i>Agrobacterium</i>, and <i>Pseudomonas</i> genera, and our results indicate that metabolite composition of necromass varied slightly across different strains but generally included amino acids, organic acids, and nucleic acid constituents. <i>Arthrobacter</i>-derived necromass appeared more recalcitrant. Necromass metabolites enriched diverse microbial genera, particularly <i>Massilia</i> sp. responded quickly regardless of the necromass source. Despite differences in necromass utilization, microbial community composition converged rapidly over time across the three different necromass amendments. Uracil, xanthine, valine, and phosphate-containing isomers were generally depleted over time, indicating microbial assimilation for maintenance and growth. However, numerous easily assimilable metabolites were not significantly depleted, suggesting efficient necromass recycling and the potential for necromass stabilization in systems. This study highlights the dynamic interactions between microbial necromass metabolites and subsurface microbial communities, revealing both selective utilization and rapid community and necromass convergence regardless of the necromass source.</p>","PeriodicalId":73516,"journal":{"name":"ISME communications","volume":"5 1","pages":"ycaf006"},"PeriodicalIF":5.1000,"publicationDate":"2025-01-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11843093/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ISME communications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1093/ismeco/ycaf006","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"ECOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

The role of microbial necromass (nonliving microbial biomass), a significant component of belowground organic carbon, in nutrient cycling and its impact on the dynamics of microbial communities in subsurface systems remains poorly understood. It is currently unclear whether necromass metabolites from various microbes are different, whether certain groups of metabolites are preferentially utilized over others, or whether different microbial species respond to various necromass metabolites. In this study, we aimed to fill these knowledge gaps by designing enrichments with necromass as the sole nutrient source for subsurface microbial communities. We used the soluble fraction of necromass from bacterial isolates belonging to Arthrobacter, Agrobacterium, and Pseudomonas genera, and our results indicate that metabolite composition of necromass varied slightly across different strains but generally included amino acids, organic acids, and nucleic acid constituents. Arthrobacter-derived necromass appeared more recalcitrant. Necromass metabolites enriched diverse microbial genera, particularly Massilia sp. responded quickly regardless of the necromass source. Despite differences in necromass utilization, microbial community composition converged rapidly over time across the three different necromass amendments. Uracil, xanthine, valine, and phosphate-containing isomers were generally depleted over time, indicating microbial assimilation for maintenance and growth. However, numerous easily assimilable metabolites were not significantly depleted, suggesting efficient necromass recycling and the potential for necromass stabilization in systems. This study highlights the dynamic interactions between microbial necromass metabolites and subsurface microbial communities, revealing both selective utilization and rapid community and necromass convergence regardless of the necromass source.

求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信