Ventilator pressure prediction employing voting regressor with time series data of patient breaths.

IF 2.2 3区 医学 Q2 HEALTH CARE SCIENCES & SERVICES
Ali Raza, Furqan Rustam, Hafeez Ur Rehman Siddiqui, Emmanuel Soriano Flores, Juan Luis Vidal Mazón, Isabel de la Torre Díez, María Asunción Vicente Ripoll, Imran Ashraf
{"title":"Ventilator pressure prediction employing voting regressor with time series data of patient breaths.","authors":"Ali Raza, Furqan Rustam, Hafeez Ur Rehman Siddiqui, Emmanuel Soriano Flores, Juan Luis Vidal Mazón, Isabel de la Torre Díez, María Asunción Vicente Ripoll, Imran Ashraf","doi":"10.1177/14604582241295912","DOIUrl":null,"url":null,"abstract":"<p><p><b>Objectives:</b> Mechanical ventilator plays a vital role in saving millions of lives. Patients with COVID-19 symptoms need a ventilator to survive during the pandemic. Studies have reported that the mortality rates rise from 50% to 97% in those requiring mechanical ventilation during COVID-19. The pumping of air into the patient's lungs using a ventilator requires a particular air pressure. High or low ventilator pressure can result in a patient's life loss as high air pressure in the ventilator causes the patient lung damage while lower pressure provides insufficient oxygen. Consequently, precise prediction of ventilator pressure is a task of great significance in this regard. The primary aim of this study is to predict the airway pressure in the ventilator respiratory circuit during the breath. <b>Methods:</b> A novel hybrid ventilator pressure predictor (H-VPP) approach is proposed. The ventilator exploratory data analysis reveals that the high values of lung attributes R and C during initial time step values are the prominent causes of high ventilator pressure. <b>Results:</b> Experiments using the proposed approach indicate H-VPP achieves a 0.78 R<sup>2</sup>, mean absolute error of 0.028, and mean squared error of 0.003. These results are better than other machine learning and deep learning models employed in this study. <b>Conclusion:</b> Extensive experimentation indicates the superior performance of the proposed approach for ventilator pressure prediction with high accuracy. Furthermore, performance comparison with state-of-the-art studies corroborates the superior performance of the proposed approach.</p>","PeriodicalId":55069,"journal":{"name":"Health Informatics Journal","volume":"31 1","pages":"14604582241295912"},"PeriodicalIF":2.2000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Health Informatics Journal","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1177/14604582241295912","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"HEALTH CARE SCIENCES & SERVICES","Score":null,"Total":0}
引用次数: 0

Abstract

Objectives: Mechanical ventilator plays a vital role in saving millions of lives. Patients with COVID-19 symptoms need a ventilator to survive during the pandemic. Studies have reported that the mortality rates rise from 50% to 97% in those requiring mechanical ventilation during COVID-19. The pumping of air into the patient's lungs using a ventilator requires a particular air pressure. High or low ventilator pressure can result in a patient's life loss as high air pressure in the ventilator causes the patient lung damage while lower pressure provides insufficient oxygen. Consequently, precise prediction of ventilator pressure is a task of great significance in this regard. The primary aim of this study is to predict the airway pressure in the ventilator respiratory circuit during the breath. Methods: A novel hybrid ventilator pressure predictor (H-VPP) approach is proposed. The ventilator exploratory data analysis reveals that the high values of lung attributes R and C during initial time step values are the prominent causes of high ventilator pressure. Results: Experiments using the proposed approach indicate H-VPP achieves a 0.78 R2, mean absolute error of 0.028, and mean squared error of 0.003. These results are better than other machine learning and deep learning models employed in this study. Conclusion: Extensive experimentation indicates the superior performance of the proposed approach for ventilator pressure prediction with high accuracy. Furthermore, performance comparison with state-of-the-art studies corroborates the superior performance of the proposed approach.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Health Informatics Journal
Health Informatics Journal HEALTH CARE SCIENCES & SERVICES-MEDICAL INFORMATICS
CiteScore
7.80
自引率
6.70%
发文量
80
审稿时长
6 months
期刊介绍: Health Informatics Journal is an international peer-reviewed journal. All papers submitted to Health Informatics Journal are subject to peer review by members of a carefully appointed editorial board. The journal operates a conventional single-blind reviewing policy in which the reviewer’s name is always concealed from the submitting author.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信