The Mammalian Oocyte: A Central Hub for Cellular Reprogramming and Stemness.

IF 1.7 Q4 CELL BIOLOGY
Stem Cells and Cloning-Advances and Applications Pub Date : 2025-02-18 eCollection Date: 2025-01-01 DOI:10.2147/SCCAA.S513982
Islam M Saadeldin, Seif Ehab, Mashan Essa F Alshammari, Aaser M Abdelazim, Abdullah M Assiri
{"title":"The Mammalian Oocyte: A Central Hub for Cellular Reprogramming and Stemness.","authors":"Islam M Saadeldin, Seif Ehab, Mashan Essa F Alshammari, Aaser M Abdelazim, Abdullah M Assiri","doi":"10.2147/SCCAA.S513982","DOIUrl":null,"url":null,"abstract":"<p><p>The mammalian oocyte is pivotal in reproductive biology, acting as a central hub for cellular reprogramming and stemness. It uniquely contributes half of the zygotic nuclear genome and the entirety of the mitochondrial genome, ensuring individual development and health. Oocyte-mediated reprogramming, exemplified by nuclear transfer, resets somatic cell identity to achieve pluripotency and has transformative potential in regenerative medicine. This process is critical for understanding cellular differentiation, improving assisted reproductive technologies, and advancing cloning and stem cell research. During fertilization, the maternal-zygotic transition shifts developmental control from maternal factors to zygotic genome activation, establishing totipotency. Oocytes also harbor reprogramming factors that guide nuclear remodeling, epigenetic modifications, and metabolic reprogramming, enabling early embryogenesis. Structures like mitochondria, lipid droplets, and cytoplasmic lattices contribute to energy production, molecular regulation, and cellular organization. Recent insights into oocyte components, such as ooplasmic nanovesicles and endolysosomal vesicular assemblies (ELVAS), highlight their roles in maintaining cellular homeostasis, protein synthesis, and reprogramming efficiency. By unraveling the reprogramming mechanisms inherent in oocytes, we advance our understanding of cloning, cell differentiation, and stem cell therapy, highlighting their valuable significance in developmental biology and regenerative medicine.</p>","PeriodicalId":44934,"journal":{"name":"Stem Cells and Cloning-Advances and Applications","volume":"18 ","pages":"15-34"},"PeriodicalIF":1.7000,"publicationDate":"2025-02-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11846613/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Stem Cells and Cloning-Advances and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2147/SCCAA.S513982","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"Q4","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

The mammalian oocyte is pivotal in reproductive biology, acting as a central hub for cellular reprogramming and stemness. It uniquely contributes half of the zygotic nuclear genome and the entirety of the mitochondrial genome, ensuring individual development and health. Oocyte-mediated reprogramming, exemplified by nuclear transfer, resets somatic cell identity to achieve pluripotency and has transformative potential in regenerative medicine. This process is critical for understanding cellular differentiation, improving assisted reproductive technologies, and advancing cloning and stem cell research. During fertilization, the maternal-zygotic transition shifts developmental control from maternal factors to zygotic genome activation, establishing totipotency. Oocytes also harbor reprogramming factors that guide nuclear remodeling, epigenetic modifications, and metabolic reprogramming, enabling early embryogenesis. Structures like mitochondria, lipid droplets, and cytoplasmic lattices contribute to energy production, molecular regulation, and cellular organization. Recent insights into oocyte components, such as ooplasmic nanovesicles and endolysosomal vesicular assemblies (ELVAS), highlight their roles in maintaining cellular homeostasis, protein synthesis, and reprogramming efficiency. By unraveling the reprogramming mechanisms inherent in oocytes, we advance our understanding of cloning, cell differentiation, and stem cell therapy, highlighting their valuable significance in developmental biology and regenerative medicine.

哺乳动物卵母细胞:细胞重编程和干细胞的中心枢纽。
哺乳动物卵母细胞在生殖生物学中起着关键作用,是细胞重编程和干细胞形成的中枢。它独特地贡献了一半的受精卵核基因组和整个线粒体基因组,确保了个体的发育和健康。卵母细胞介导的重编程,以核移植为例,重置体细胞身份以实现多能性,在再生医学中具有变革潜力。这一过程对于理解细胞分化、改进辅助生殖技术、推进克隆和干细胞研究至关重要。在受精过程中,母性-合子过渡将发育控制从母性因素转移到合子基因组激活,从而建立全能性。卵母细胞还含有重编程因子,这些重编程因子指导核重塑、表观遗传修饰和代谢重编程,从而实现早期胚胎发生。线粒体、脂滴和细胞质晶格等结构有助于能量产生、分子调节和细胞组织。最近对卵母细胞成分的研究,如卵浆纳米囊泡和内溶酶体囊泡组件(ELVAS),强调了它们在维持细胞稳态、蛋白质合成和重编程效率方面的作用。通过揭示卵母细胞固有的重编程机制,我们推进了对克隆、细胞分化和干细胞治疗的理解,突出了它们在发育生物学和再生医学中的重要意义。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
6.50
自引率
0.00%
发文量
10
审稿时长
16 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信