{"title":"Loss of Tapasin in Tumors Potentiates T-Cell Recognition and Anti-Tumor Effects of Immune Checkpoint Blockade","authors":"Keigo Moniwa, Serina Tokita, Toshiyuki Sumi, Hiroshi Saijo, Shintaro Sugita, Kotomi Arioka, Yoshihiko Hirohashi, Hirofumi Chiba, Takayuki Kanaseki, Toshihiko Torigoe","doi":"10.1111/cas.70027","DOIUrl":null,"url":null,"abstract":"<p>Tumors can evade host immune surveillance by compromising the intracellular antigen processing machinery (APM), such as beta 2 macroglobulin (β2m) or the transporter associated with antigen processing (TAP). Defects in the APM generally result in the downregulation of surface MHC class I (MHC-I) levels. Here, we show that the downregulation of a component of the peptide loading complex (PLC), tapasin, in tumors conversely induces CD8<sup>+</sup> T-cell responses and inhibits tumor growth in vivo. Loss of tapasin enhanced the anti-tumor effects of immune checkpoint blockade (ICB) in mouse non-small cell lung and colon cancer models. In contrast to β2m-deficient tumors, the reduced levels of MHC-I in tapasin-deficient tumors were restored by IFN-γ treatment, allowing them to be recognized by CD8<sup>+</sup> T cells. These results suggest the presence of a reactive CD8<sup>+</sup> T-cell fraction and the ability of immune surveillance to eliminate tumor variants with impaired tapasin expression.</p>","PeriodicalId":9580,"journal":{"name":"Cancer Science","volume":"116 5","pages":"1203-1213"},"PeriodicalIF":4.5000,"publicationDate":"2025-02-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/cas.70027","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cancer Science","FirstCategoryId":"3","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/cas.70027","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ONCOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Tumors can evade host immune surveillance by compromising the intracellular antigen processing machinery (APM), such as beta 2 macroglobulin (β2m) or the transporter associated with antigen processing (TAP). Defects in the APM generally result in the downregulation of surface MHC class I (MHC-I) levels. Here, we show that the downregulation of a component of the peptide loading complex (PLC), tapasin, in tumors conversely induces CD8+ T-cell responses and inhibits tumor growth in vivo. Loss of tapasin enhanced the anti-tumor effects of immune checkpoint blockade (ICB) in mouse non-small cell lung and colon cancer models. In contrast to β2m-deficient tumors, the reduced levels of MHC-I in tapasin-deficient tumors were restored by IFN-γ treatment, allowing them to be recognized by CD8+ T cells. These results suggest the presence of a reactive CD8+ T-cell fraction and the ability of immune surveillance to eliminate tumor variants with impaired tapasin expression.
期刊介绍:
Cancer Science (formerly Japanese Journal of Cancer Research) is a monthly publication of the Japanese Cancer Association. First published in 1907, the Journal continues to publish original articles, editorials, and letters to the editor, describing original research in the fields of basic, translational and clinical cancer research. The Journal also accepts reports and case reports.
Cancer Science aims to present highly significant and timely findings that have a significant clinical impact on oncologists or that may alter the disease concept of a tumor. The Journal will not publish case reports that describe a rare tumor or condition without new findings to be added to previous reports; combination of different tumors without new suggestive findings for oncological research; remarkable effect of already known treatments without suggestive data to explain the exceptional result. Review articles may also be published.