Epistasis and cryptic QTL identified using modified bulk segregant analysis of copper resistance in budding yeast.

IF 3.3 3区 生物学 Q2 GENETICS & HEREDITY
Genetics Pub Date : 2025-04-17 DOI:10.1093/genetics/iyaf026
Cassandra Buzby, Yevgeniy Plavskin, Federica M O Sartori, Qiange Tong, Janessa K Vail, Mark L Siegal
{"title":"Epistasis and cryptic QTL identified using modified bulk segregant analysis of copper resistance in budding yeast.","authors":"Cassandra Buzby, Yevgeniy Plavskin, Federica M O Sartori, Qiange Tong, Janessa K Vail, Mark L Siegal","doi":"10.1093/genetics/iyaf026","DOIUrl":null,"url":null,"abstract":"<p><p>The contributions of genetic interactions to natural trait variation are challenging to estimate experimentally, as current approaches for detecting epistasis are often underpowered. Powerful mapping approaches such as bulk segregant analysis (BSA), wherein individuals with extreme phenotypes are pooled for genotyping, obscure epistasis by averaging over genotype combinations. To accurately characterize and quantify epistasis underlying natural trait variation, we have engineered strains of the budding yeast Saccharomyces cerevisiae to enable crosses where one parent's chromosome is fixed while the rest of the chromosomes segregate. These crosses allow us to use BSA to identify quantitative trait loci (QTL) whose effects depend on alleles on the fixed parental chromosome, indicating a genetic interaction with that chromosome. Our method, which we term epic-QTL (for epistatic-with-chromosome QTL) analysis, can thus identify interaction loci with high statistical power. Here, we perform epic-QTL analysis of copper resistance with chromosome I or VIII fixed in a cross between divergent naturally derived strains. We find 7 loci that interact significantly with chromosome VIII and none that interact with chromosome I, the smallest of the 16 budding yeast chromosomes. Each of the 7 interactions alters the magnitude, rather than the direction, of an additive QTL effect. We also show that fixation of one source of variation-in this case, chromosome VIII, which contains the large-effect QTL mapping to CUP1-increases power to detect the contributions of other loci to trait differences.</p>","PeriodicalId":48925,"journal":{"name":"Genetics","volume":" ","pages":""},"PeriodicalIF":3.3000,"publicationDate":"2025-04-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12005261/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Genetics","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1093/genetics/iyaf026","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"GENETICS & HEREDITY","Score":null,"Total":0}
引用次数: 0

Abstract

The contributions of genetic interactions to natural trait variation are challenging to estimate experimentally, as current approaches for detecting epistasis are often underpowered. Powerful mapping approaches such as bulk segregant analysis (BSA), wherein individuals with extreme phenotypes are pooled for genotyping, obscure epistasis by averaging over genotype combinations. To accurately characterize and quantify epistasis underlying natural trait variation, we have engineered strains of the budding yeast Saccharomyces cerevisiae to enable crosses where one parent's chromosome is fixed while the rest of the chromosomes segregate. These crosses allow us to use BSA to identify quantitative trait loci (QTL) whose effects depend on alleles on the fixed parental chromosome, indicating a genetic interaction with that chromosome. Our method, which we term epic-QTL (for epistatic-with-chromosome QTL) analysis, can thus identify interaction loci with high statistical power. Here, we perform epic-QTL analysis of copper resistance with chromosome I or VIII fixed in a cross between divergent naturally derived strains. We find 7 loci that interact significantly with chromosome VIII and none that interact with chromosome I, the smallest of the 16 budding yeast chromosomes. Each of the 7 interactions alters the magnitude, rather than the direction, of an additive QTL effect. We also show that fixation of one source of variation-in this case, chromosome VIII, which contains the large-effect QTL mapping to CUP1-increases power to detect the contributions of other loci to trait differences.

芽殖酵母铜抗性的上位性和隐性QTL鉴定。
遗传相互作用对自然性状变异的贡献在实验上是具有挑战性的,因为目前检测上位性的方法往往能力不足。强大的定位方法,如大量分离分析,其中具有极端表型的个体被汇集进行基因分型,通过平均基因型组合来模糊上位性。为了准确地描述和量化自然性状变异背后的上位性,我们对出芽酵母酿酒酵母进行了工程改造,使亲本染色体固定而其余染色体分离的杂交成为可能。这些杂交使我们能够使用大量分离分析来鉴定数量性状位点(QTL),其作用取决于固定亲本染色体上的等位基因,表明与该染色体的遗传相互作用。我们的方法,我们称之为史诗QTL(上位与染色体QTL)分析,因此可以识别具有高统计能力的相互作用位点。在这里,我们进行了史诗级的qtl分析,染色体I或VIII固定在不同的自然衍生菌株之间的杂交中。我们发现有7个位点与第8染色体显著相互作用,而没有一个位点与第1染色体相互作用,第1染色体是16条出芽酵母染色体中最小的。这七个相互作用中的每一个都改变了QTL效应的大小,而不是方向。我们还表明,固定一个变异源——在本例中,包含cup1大效QTL定位的VIII染色体——增加了检测其他基因座对性状差异贡献的能力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Genetics
Genetics GENETICS & HEREDITY-
CiteScore
6.90
自引率
6.10%
发文量
177
审稿时长
1.5 months
期刊介绍: GENETICS is published by the Genetics Society of America, a scholarly society that seeks to deepen our understanding of the living world by advancing our understanding of genetics. Since 1916, GENETICS has published high-quality, original research presenting novel findings bearing on genetics and genomics. The journal publishes empirical studies of organisms ranging from microbes to humans, as well as theoretical work. While it has an illustrious history, GENETICS has changed along with the communities it serves: it is not your mentor''s journal. The editors make decisions quickly – in around 30 days – without sacrificing the excellence and scholarship for which the journal has long been known. GENETICS is a peer reviewed, peer-edited journal, with an international reach and increasing visibility and impact. All editorial decisions are made through collaboration of at least two editors who are practicing scientists. GENETICS is constantly innovating: expanded types of content include Reviews, Commentary (current issues of interest to geneticists), Perspectives (historical), Primers (to introduce primary literature into the classroom), Toolbox Reviews, plus YeastBook, FlyBook, and WormBook (coming spring 2016). For particularly time-sensitive results, we publish Communications. As part of our mission to serve our communities, we''ve published thematic collections, including Genomic Selection, Multiparental Populations, Mouse Collaborative Cross, and the Genetics of Sex.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信