Matteo Zancanaro, Valentin Nkana Ngan, Giovanni Stabile, Gianluigi Rozza
{"title":"A segregated reduced-order model of a pressure-based solver for turbulent compressible flows.","authors":"Matteo Zancanaro, Valentin Nkana Ngan, Giovanni Stabile, Gianluigi Rozza","doi":"10.1186/s40323-025-00284-8","DOIUrl":null,"url":null,"abstract":"<p><p>This article provides a reduced-order modelling framework for turbulent compressible flows discretized by the use of finite volume approaches. The basic idea behind this work is the construction of a reduced-order model capable of providing closely accurate solutions with respect to the high fidelity flow fields. Full-order solutions are often obtained through the use of segregated solvers (<i>solution variables are solved one after another</i>), employing slightly modified conservation laws so that they can be decoupled and then solved one at a time. Classical reduction architectures, on the contrary, rely on the Galerkin projection of a complete Navier-Stokes system to be projected all at once, causing a mild discrepancy with the high order solutions. This article relies on segregated reduced-order algorithms for the resolution of turbulent and compressible flows in the context of physical and geometrical parameters. At the full-order level turbulence is modeled using an eddy viscosity approach. Since there is a variety of different turbulence models for the approximation of this supplementary viscosity, one of the aims of this work is to provide a reduced-order model which is independent on this selection. This goal is reached by the application of hybrid methods where Navier-Stokes equations are projected in a standard way while the viscosity field is approximated by the use of data-driven interpolation methods or by the evaluation of a properly trained neural network. By exploiting the aforementioned expedients it is possible to predict accurate solutions with respect to the full-order problems characterized by high Reynolds numbers and elevated Mach numbers.</p>","PeriodicalId":37424,"journal":{"name":"Advanced Modeling and Simulation in Engineering Sciences","volume":"12 1","pages":"3"},"PeriodicalIF":2.0000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11839796/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Modeling and Simulation in Engineering Sciences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1186/s40323-025-00284-8","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/2/19 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"MECHANICS","Score":null,"Total":0}
引用次数: 0
Abstract
This article provides a reduced-order modelling framework for turbulent compressible flows discretized by the use of finite volume approaches. The basic idea behind this work is the construction of a reduced-order model capable of providing closely accurate solutions with respect to the high fidelity flow fields. Full-order solutions are often obtained through the use of segregated solvers (solution variables are solved one after another), employing slightly modified conservation laws so that they can be decoupled and then solved one at a time. Classical reduction architectures, on the contrary, rely on the Galerkin projection of a complete Navier-Stokes system to be projected all at once, causing a mild discrepancy with the high order solutions. This article relies on segregated reduced-order algorithms for the resolution of turbulent and compressible flows in the context of physical and geometrical parameters. At the full-order level turbulence is modeled using an eddy viscosity approach. Since there is a variety of different turbulence models for the approximation of this supplementary viscosity, one of the aims of this work is to provide a reduced-order model which is independent on this selection. This goal is reached by the application of hybrid methods where Navier-Stokes equations are projected in a standard way while the viscosity field is approximated by the use of data-driven interpolation methods or by the evaluation of a properly trained neural network. By exploiting the aforementioned expedients it is possible to predict accurate solutions with respect to the full-order problems characterized by high Reynolds numbers and elevated Mach numbers.
期刊介绍:
The research topics addressed by Advanced Modeling and Simulation in Engineering Sciences (AMSES) cover the vast domain of the advanced modeling and simulation of materials, processes and structures governed by the laws of mechanics. The emphasis is on advanced and innovative modeling approaches and numerical strategies. The main objective is to describe the actual physics of large mechanical systems with complicated geometries as accurately as possible using complex, highly nonlinear and coupled multiphysics and multiscale models, and then to carry out simulations with these complex models as rapidly as possible. In other words, this research revolves around efficient numerical modeling along with model verification and validation. Therefore, the corresponding papers deal with advanced modeling and simulation, efficient optimization, inverse analysis, data-driven computation and simulation-based control. These challenging issues require multidisciplinary efforts – particularly in modeling, numerical analysis and computer science – which are treated in this journal.