MPAR-RCNN: a multi-task network for multiple person detection with attribute recognition.

IF 3 Q2 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE
Frontiers in Artificial Intelligence Pub Date : 2025-02-07 eCollection Date: 2025-01-01 DOI:10.3389/frai.2025.1454488
S Raghavendra, S K Abhilash, Venu Madhav Nookala, Jayashree Shetty, Praveen Gurunath Bharathi
{"title":"MPAR-RCNN: a multi-task network for multiple person detection with attribute recognition.","authors":"S Raghavendra, S K Abhilash, Venu Madhav Nookala, Jayashree Shetty, Praveen Gurunath Bharathi","doi":"10.3389/frai.2025.1454488","DOIUrl":null,"url":null,"abstract":"<p><p>Multi-label attribute recognition is a critical task in computer vision, with applications ranging across diverse fields. This problem often involves detecting objects with multiple attributes, necessitating sophisticated models capable of both high-level differentiation and fine-grained feature extraction. The integration of object detection and attribute recognition typically relies on approaches such as dual-stage networks, where accurate predictions depend on advanced feature extraction techniques, such as Region of Interest (RoI) pooling. To meet these demands, an efficient method that achieves both reliable detection and attribute classification in a unified framework is essential. This study introduces an innovative MTL framework designed to incorporate Multi-Person Attribute Recognition (MPAR) within a single-model architecture. Named MPAR-RCNN, this framework unifies object detection and attribute recognition tasks through a spatially aware, shared backbone, facilitating efficient and accurate multi-label prediction. Unlike the traditional Fast Region-based Convolutional Neural Network (R-CNN), which separately manages person detection and attribute classification with a dual-stage network, the MPAR-RCNN architecture optimizes both tasks within a single structure. Validated on the WIDER (Web Image Dataset for Event Recognition) dataset, the proposed model demonstrates an improvement over current state-of-the-art (SOTA) architectures, showcasing its potential in advancing multi-label attribute recognition.</p>","PeriodicalId":33315,"journal":{"name":"Frontiers in Artificial Intelligence","volume":"8 ","pages":"1454488"},"PeriodicalIF":3.0000,"publicationDate":"2025-02-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11842310/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers in Artificial Intelligence","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3389/frai.2025.1454488","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

Abstract

Multi-label attribute recognition is a critical task in computer vision, with applications ranging across diverse fields. This problem often involves detecting objects with multiple attributes, necessitating sophisticated models capable of both high-level differentiation and fine-grained feature extraction. The integration of object detection and attribute recognition typically relies on approaches such as dual-stage networks, where accurate predictions depend on advanced feature extraction techniques, such as Region of Interest (RoI) pooling. To meet these demands, an efficient method that achieves both reliable detection and attribute classification in a unified framework is essential. This study introduces an innovative MTL framework designed to incorporate Multi-Person Attribute Recognition (MPAR) within a single-model architecture. Named MPAR-RCNN, this framework unifies object detection and attribute recognition tasks through a spatially aware, shared backbone, facilitating efficient and accurate multi-label prediction. Unlike the traditional Fast Region-based Convolutional Neural Network (R-CNN), which separately manages person detection and attribute classification with a dual-stage network, the MPAR-RCNN architecture optimizes both tasks within a single structure. Validated on the WIDER (Web Image Dataset for Event Recognition) dataset, the proposed model demonstrates an improvement over current state-of-the-art (SOTA) architectures, showcasing its potential in advancing multi-label attribute recognition.

求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
6.10
自引率
2.50%
发文量
272
审稿时长
13 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信