A Reverse Transcription Nucleic-Acid-Based Barcoding System for In Vivo Measurement of Lipid Nanoparticle mRNA Delivery.

IF 3.8 Q2 BIOCHEMISTRY & MOLECULAR BIOLOGY
ACS Bio & Med Chem Au Pub Date : 2025-02-05 eCollection Date: 2025-02-19 DOI:10.1021/acsbiomedchemau.4c00081
Kevin C Wang, Tiana L Young, Jingan Chen, Shannon N Tsai, Yue Xu, Andrew J Varley, Nicholas C Solek, Fanglin Gong, Rick X Z Lu, Basil P Hubbard, Bowen Li
{"title":"A Reverse Transcription Nucleic-Acid-Based Barcoding System for <i>In Vivo</i> Measurement of Lipid Nanoparticle mRNA Delivery.","authors":"Kevin C Wang, Tiana L Young, Jingan Chen, Shannon N Tsai, Yue Xu, Andrew J Varley, Nicholas C Solek, Fanglin Gong, Rick X Z Lu, Basil P Hubbard, Bowen Li","doi":"10.1021/acsbiomedchemau.4c00081","DOIUrl":null,"url":null,"abstract":"<p><p>Lipid nanoparticles (LNPs) are the most extensively validated clinical delivery vehicles for mRNA therapeutics, exemplified by their widespread use in the mRNA COVID-19 vaccines. The pace of lipid nanoparticle (LNP) development for mRNA therapeutics is restricted by the limitations of existing methods for large-scale LNP screening. To address this challenge, we developed Quantitative Analysis of Reverse Transcribed Barcodes (QuART), a novel nucleic-acid-based system for measuring LNP functional delivery in vivo. QuART uses a bacterial retron reverse transcription system to couple functional mRNA delivery into the cytoplasm with a cDNA barcode readout. Our results demonstrate that QuART can be used to identify functional mRNA delivery both in vitro in cell culture and in vivo in mice. Multiplexing of QuART could enable high-throughput screening of LNP formulations, facilitating the rapid discovery of promising LNP candidates for mRNA therapeutics.</p>","PeriodicalId":29802,"journal":{"name":"ACS Bio & Med Chem Au","volume":"5 1","pages":"35-41"},"PeriodicalIF":3.8000,"publicationDate":"2025-02-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11843327/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Bio & Med Chem Au","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1021/acsbiomedchemau.4c00081","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/2/19 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Lipid nanoparticles (LNPs) are the most extensively validated clinical delivery vehicles for mRNA therapeutics, exemplified by their widespread use in the mRNA COVID-19 vaccines. The pace of lipid nanoparticle (LNP) development for mRNA therapeutics is restricted by the limitations of existing methods for large-scale LNP screening. To address this challenge, we developed Quantitative Analysis of Reverse Transcribed Barcodes (QuART), a novel nucleic-acid-based system for measuring LNP functional delivery in vivo. QuART uses a bacterial retron reverse transcription system to couple functional mRNA delivery into the cytoplasm with a cDNA barcode readout. Our results demonstrate that QuART can be used to identify functional mRNA delivery both in vitro in cell culture and in vivo in mice. Multiplexing of QuART could enable high-throughput screening of LNP formulations, facilitating the rapid discovery of promising LNP candidates for mRNA therapeutics.

求助全文
约1分钟内获得全文 求助全文
来源期刊
ACS Bio & Med Chem Au
ACS Bio & Med Chem Au 药物、生物、化学-
CiteScore
4.10
自引率
0.00%
发文量
0
期刊介绍: ACS Bio & Med Chem Au is a broad scope open access journal which publishes short letters comprehensive articles reviews and perspectives in all aspects of biological and medicinal chemistry. Studies providing fundamental insights or describing novel syntheses as well as clinical or other applications-based work are welcomed.This broad scope includes experimental and theoretical studies on the chemical physical mechanistic and/or structural basis of biological or cell function in all domains of life. It encompasses the fields of chemical biology synthetic biology disease biology cell biology agriculture and food natural products research nucleic acid biology neuroscience structural biology and biophysics.The journal publishes studies that pertain to a broad range of medicinal chemistry including compound design and optimization biological evaluation molecular mechanistic understanding of drug delivery and drug delivery systems imaging agents and pharmacology and translational science of both small and large bioactive molecules. Novel computational cheminformatics and structural studies for the identification (or structure-activity relationship analysis) of bioactive molecules ligands and their targets are also welcome. The journal will consider computational studies applying established computational methods but only in combination with novel and original experimental data (e.g. in cases where new compounds have been designed and tested).Also included in the scope of the journal are articles relating to infectious diseases research on pathogens host-pathogen interactions therapeutics diagnostics vaccines drug-delivery systems and other biomedical technology development pertaining to infectious diseases.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信