Ultrasmall radical metal organic cage as cascade antioxidant nanozyme for renal injury.

IF 12.4 1区 医学 Q1 MEDICINE, RESEARCH & EXPERIMENTAL
Theranostics Pub Date : 2025-01-27 eCollection Date: 2025-01-01 DOI:10.7150/thno.105807
Cheng Huang, Ziyu Liu, Yucen Deng, Xiaoyan Wang, Qing Miao, Demei Sun, Xinyuan Zhu, Jinghui Yang, Youfu Wang
{"title":"Ultrasmall radical metal organic cage as cascade antioxidant nanozyme for renal injury.","authors":"Cheng Huang, Ziyu Liu, Yucen Deng, Xiaoyan Wang, Qing Miao, Demei Sun, Xinyuan Zhu, Jinghui Yang, Youfu Wang","doi":"10.7150/thno.105807","DOIUrl":null,"url":null,"abstract":"<p><p><b>Rationale:</b> As substitutes for natural enzymes, nanozymes offer tunable enzyme-like activities and remarkable structural stability, granting them the potential to treat various diseases, including renal ischemia-reperfusion (I/R) injury. However, the majority of developed nanozymes suffer from unclear structures and limited activity profiles, which hinder the study of their structure-activity relationships, catalytic diversity, mass production, and clinical application. <b>Methods:</b> Herein, we introduce an atomically precise and ultrasmall cascade nanozyme based on a radical-functionalized metal-organic cage (MOC-R). This nanozyme is synthesized through the coordination of radical ligands with copper ions, resulting in a cuboctahedral structure. <b>Results:</b> The MOC-R exhibits cascade antioxidant activities, mimicking the functions of superoxide dismutase (SOD) and catalase (CAT), owing to the synergism between the external radicals and internal copper clusters. The MOC-R nanozyme demonstrates exceptional radical scavenging and anti-inflammatory properties. It mitigates immune cell infiltration, promotes macrophage polarization towards the M2-like phenotype, reduces inflammatory cytokine secretion, and suppresses excessive autophagy and apoptosis. <b>Conclusions:</b> This study not only presents an atomically precise cascade nanozyme but also highlights its promising therapeutic potential for renal I/R injury.</p>","PeriodicalId":22932,"journal":{"name":"Theranostics","volume":"15 6","pages":"2564-2578"},"PeriodicalIF":12.4000,"publicationDate":"2025-01-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11840732/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Theranostics","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.7150/thno.105807","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"MEDICINE, RESEARCH & EXPERIMENTAL","Score":null,"Total":0}
引用次数: 0

Abstract

Rationale: As substitutes for natural enzymes, nanozymes offer tunable enzyme-like activities and remarkable structural stability, granting them the potential to treat various diseases, including renal ischemia-reperfusion (I/R) injury. However, the majority of developed nanozymes suffer from unclear structures and limited activity profiles, which hinder the study of their structure-activity relationships, catalytic diversity, mass production, and clinical application. Methods: Herein, we introduce an atomically precise and ultrasmall cascade nanozyme based on a radical-functionalized metal-organic cage (MOC-R). This nanozyme is synthesized through the coordination of radical ligands with copper ions, resulting in a cuboctahedral structure. Results: The MOC-R exhibits cascade antioxidant activities, mimicking the functions of superoxide dismutase (SOD) and catalase (CAT), owing to the synergism between the external radicals and internal copper clusters. The MOC-R nanozyme demonstrates exceptional radical scavenging and anti-inflammatory properties. It mitigates immune cell infiltration, promotes macrophage polarization towards the M2-like phenotype, reduces inflammatory cytokine secretion, and suppresses excessive autophagy and apoptosis. Conclusions: This study not only presents an atomically precise cascade nanozyme but also highlights its promising therapeutic potential for renal I/R injury.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Theranostics
Theranostics MEDICINE, RESEARCH & EXPERIMENTAL-
CiteScore
25.40
自引率
1.60%
发文量
433
审稿时长
1 months
期刊介绍: Theranostics serves as a pivotal platform for the exchange of clinical and scientific insights within the diagnostic and therapeutic molecular and nanomedicine community, along with allied professions engaged in integrating molecular imaging and therapy. As a multidisciplinary journal, Theranostics showcases innovative research articles spanning fields such as in vitro diagnostics and prognostics, in vivo molecular imaging, molecular therapeutics, image-guided therapy, biosensor technology, nanobiosensors, bioelectronics, system biology, translational medicine, point-of-care applications, and personalized medicine. Encouraging a broad spectrum of biomedical research with potential theranostic applications, the journal rigorously peer-reviews primary research, alongside publishing reviews, news, and commentary that aim to bridge the gap between the laboratory, clinic, and biotechnology industries.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信