Molecular mechanism of interactions of SPIN1 with novel inhibitors through molecular docking and molecular dynamics simulations.

IF 2.3 3区 环境科学与生态学 Q3 CHEMISTRY, MULTIDISCIPLINARY
S Wang, R Wang, J Yang, L Xu, B Zhao, L Chen
{"title":"Molecular mechanism of interactions of SPIN1 with novel inhibitors through molecular docking and molecular dynamics simulations.","authors":"S Wang, R Wang, J Yang, L Xu, B Zhao, L Chen","doi":"10.1080/1062936X.2025.2463586","DOIUrl":null,"url":null,"abstract":"<p><p>Methyllysine reading protein Spindlin 1 (SPIN1) plays a crucial role in histone post-translational modifications and serves as an effective target for the treatment of various malignant tumours. Although several inhibitors targeting SPIN1 expression have been identified, the atomic-level interactions between SPIN1 and inhibitors remain unclear. In this study, six potential SPIN1 inhibitors A366, EML631, MS31, MS8535, vinspinln, and XY49-92B were selected for molecular docking with SPIN1. Conformational changes in SPIN1 induced by these inhibitors, as well as their interactions, were investigated using molecular dynamics simulation (MD) and energy prediction methods including molecular mechanics generalized Born surface area (MM-GBSA) and solvation interaction energy (SIE). The findings indicate that the binding pockets within domain II, specifically Phe141, Trp151, Tyr170, and Tyr177, engage in cation-π interactions with these inhibitors, while also contributing to van der Waals hydrophobic interactions of varying strengths. These van der Waals hydrophobic interactions are critical for their binding affinity, while electrostatic interactions are significantly counterbalanced by polar solvation effects. In addition, through virtual screening and molecular docking, a new lead compound CXY49 was found presenting an effective binding to SPIN1. The structural and energetic changes identified in this study provide valuable insights for the development of new SPIN1 inhibitors.</p>","PeriodicalId":21446,"journal":{"name":"SAR and QSAR in Environmental Research","volume":"36 1","pages":"57-77"},"PeriodicalIF":2.3000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"SAR and QSAR in Environmental Research","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1080/1062936X.2025.2463586","RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/2/24 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Methyllysine reading protein Spindlin 1 (SPIN1) plays a crucial role in histone post-translational modifications and serves as an effective target for the treatment of various malignant tumours. Although several inhibitors targeting SPIN1 expression have been identified, the atomic-level interactions between SPIN1 and inhibitors remain unclear. In this study, six potential SPIN1 inhibitors A366, EML631, MS31, MS8535, vinspinln, and XY49-92B were selected for molecular docking with SPIN1. Conformational changes in SPIN1 induced by these inhibitors, as well as their interactions, were investigated using molecular dynamics simulation (MD) and energy prediction methods including molecular mechanics generalized Born surface area (MM-GBSA) and solvation interaction energy (SIE). The findings indicate that the binding pockets within domain II, specifically Phe141, Trp151, Tyr170, and Tyr177, engage in cation-π interactions with these inhibitors, while also contributing to van der Waals hydrophobic interactions of varying strengths. These van der Waals hydrophobic interactions are critical for their binding affinity, while electrostatic interactions are significantly counterbalanced by polar solvation effects. In addition, through virtual screening and molecular docking, a new lead compound CXY49 was found presenting an effective binding to SPIN1. The structural and energetic changes identified in this study provide valuable insights for the development of new SPIN1 inhibitors.

通过分子对接和分子动力学模拟SPIN1与新型抑制剂相互作用的分子机制。
甲基赖氨酸读取蛋白Spindlin 1 (SPIN1)在组蛋白翻译后修饰中起着至关重要的作用,是治疗多种恶性肿瘤的有效靶点。虽然已经确定了几种靶向SPIN1表达的抑制剂,但SPIN1与抑制剂之间的原子水平相互作用仍不清楚。本研究选择了6种潜在的SPIN1抑制剂A366、EML631、MS31、MS8535、vinsinln和XY49-92B与SPIN1进行分子对接。利用分子动力学模拟(MD)和分子力学广义Born表面积(MM-GBSA)和溶剂化相互作用能(SIE)等能量预测方法,研究了这些抑制剂诱导SPIN1的构象变化及其相互作用。研究结果表明,结构域II内的结合囊,特别是Phe141、Trp151、Tyr170和Tyr177,与这些抑制剂进行阳离子-π相互作用,同时也促进了不同强度的范德华疏水相互作用。这些范德华疏水相互作用对它们的结合亲和力至关重要,而静电相互作用则被极性溶剂化效应显著地抵消。此外,通过虚拟筛选和分子对接,发现一个新的先导化合物CXY49与SPIN1有效结合。本研究中发现的结构和能量变化为开发新的SPIN1抑制剂提供了有价值的见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
5.20
自引率
20.00%
发文量
78
审稿时长
>24 weeks
期刊介绍: SAR and QSAR in Environmental Research is an international journal welcoming papers on the fundamental and practical aspects of the structure-activity and structure-property relationships in the fields of environmental science, agrochemistry, toxicology, pharmacology and applied chemistry. A unique aspect of the journal is the focus on emerging techniques for the building of SAR and QSAR models in these widely varying fields. The scope of the journal includes, but is not limited to, the topics of topological and physicochemical descriptors, mathematical, statistical and graphical methods for data analysis, computer methods and programs, original applications and comparative studies. In addition to primary scientific papers, the journal contains reviews of books and software and news of conferences. Special issues on topics of current and widespread interest to the SAR and QSAR community will be published from time to time.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信