Plasmid-borne mcr-1 and replicative transposition of episomal and chromosomal blaNDM-1, blaOXA-69, and blaOXA-23 carbapenemases in a clinical Acinetobacter baumannii isolate.
Masego Mmatli, Nontombi Marylucy Mbelle, John Osei Sekyere
{"title":"Plasmid-borne <i>mcr-1</i> and replicative transposition of episomal and chromosomal <i>bla</i><sub>NDM-1</sub>, <i>bla</i><sub>OXA-69</sub>, and <i>bla</i><sub>OXA-23</sub> carbapenemases in a clinical <i>Acinetobacter baumannii</i> isolate.","authors":"Masego Mmatli, Nontombi Marylucy Mbelle, John Osei Sekyere","doi":"10.1128/msystems.01683-24","DOIUrl":null,"url":null,"abstract":"<p><p>A multidrug-resistant clinical <i>Acinetobacter baumannii</i> isolate with resistance to most antibiotics was isolated from a patient at an intensive care unit. The genetic environment, transcriptome, mobile, and resistome were characterized. The MicroScan system, disc diffusion, and broth microdilution were used to determine the resistance profile of the isolate. A multiplex PCR assay was also used to screen for carbapenemases and <i>mcr</i>-1 to -5 resistance genes. Efflux-pump inhibitors were used to evaluate efflux activity. The resistome, mobilome, epigenome, and transcriptome were characterized. There was phenotypic resistance to 22 of the 25 antibiotics tested, intermediate resistance to levofloxacin and nalidixic acid, and susceptibility to tigecycline, which corresponded to the 27 resistance genes found in the genome, most of which occurred in multiple copies through replicative transposition. A plasmid-borne (pR-B2.MM_C3) <i>mcr-</i>1 and chromosomal <i>bla</i><sub>PER-7</sub><i>, bla</i><sub>OXA-69</sub><i>, bla</i><sub>OXA-23</sub> (three copies), <i>bla</i><sub>ADC-25</sub>, <i>bla</i><sub>TEM-1B</sub>, and <i>bla</i><sub>NDM-1</sub> were found within composite transposons, ISs, and/or class 1 and 2 integrons on genomic islands. Types I and II methylases and restriction endonucleases were in close synteny to these resistance genes within the genomic islands; chromosomal genomic islands aligned with known plasmids. There was a closer evolutionary relationship between the strain and global strains but not local or regional strains; the resistomes also differed. Significantly expressed/repressed genes (6.2%) included resistance genes, hypothetical proteins, mobile elements, methyltransferases, transcription factors, and membrane and efflux proteins. The genomic evolution observed in this strain explains its adaptability and pandrug resistance and shows its genomic plasticity on exposure to antibiotics.</p><p><strong>Importance: </strong>A pandrug-resistant pathogen that was susceptible to only a single antibiotic, tigecycline, was isolated from a middle-aged patient in an ICU. This pathogen contained two plasmids and had a chromosome that contained portions that were integrated externally from plasmids. These genomic islands were rich with resistance genes, mobile genetic elements, and restriction-modification systems that protected the pathogen and facilitated gene regulation. The strain contained 35 resistance genes and 12 virulence genes. The strain was of closer evolutionary distance to several international strains suggesting that it was imported into South Africa. However, its resistome was unique, suggesting an independent evolution on exposure to antibiotic therapy mediated by epigenomic factors and MGE transposition events. The varied mechanisms available to this strain to overcome antibiotic resistance and spread to other areas and/or transfer its resistance determinants are worrying. This is ultimately a risk to public health, evincing the need for antibiotic stewardship.</p>","PeriodicalId":18819,"journal":{"name":"mSystems","volume":" ","pages":"e0168324"},"PeriodicalIF":5.0000,"publicationDate":"2025-02-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"mSystems","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1128/msystems.01683-24","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
A multidrug-resistant clinical Acinetobacter baumannii isolate with resistance to most antibiotics was isolated from a patient at an intensive care unit. The genetic environment, transcriptome, mobile, and resistome were characterized. The MicroScan system, disc diffusion, and broth microdilution were used to determine the resistance profile of the isolate. A multiplex PCR assay was also used to screen for carbapenemases and mcr-1 to -5 resistance genes. Efflux-pump inhibitors were used to evaluate efflux activity. The resistome, mobilome, epigenome, and transcriptome were characterized. There was phenotypic resistance to 22 of the 25 antibiotics tested, intermediate resistance to levofloxacin and nalidixic acid, and susceptibility to tigecycline, which corresponded to the 27 resistance genes found in the genome, most of which occurred in multiple copies through replicative transposition. A plasmid-borne (pR-B2.MM_C3) mcr-1 and chromosomal blaPER-7, blaOXA-69, blaOXA-23 (three copies), blaADC-25, blaTEM-1B, and blaNDM-1 were found within composite transposons, ISs, and/or class 1 and 2 integrons on genomic islands. Types I and II methylases and restriction endonucleases were in close synteny to these resistance genes within the genomic islands; chromosomal genomic islands aligned with known plasmids. There was a closer evolutionary relationship between the strain and global strains but not local or regional strains; the resistomes also differed. Significantly expressed/repressed genes (6.2%) included resistance genes, hypothetical proteins, mobile elements, methyltransferases, transcription factors, and membrane and efflux proteins. The genomic evolution observed in this strain explains its adaptability and pandrug resistance and shows its genomic plasticity on exposure to antibiotics.
Importance: A pandrug-resistant pathogen that was susceptible to only a single antibiotic, tigecycline, was isolated from a middle-aged patient in an ICU. This pathogen contained two plasmids and had a chromosome that contained portions that were integrated externally from plasmids. These genomic islands were rich with resistance genes, mobile genetic elements, and restriction-modification systems that protected the pathogen and facilitated gene regulation. The strain contained 35 resistance genes and 12 virulence genes. The strain was of closer evolutionary distance to several international strains suggesting that it was imported into South Africa. However, its resistome was unique, suggesting an independent evolution on exposure to antibiotic therapy mediated by epigenomic factors and MGE transposition events. The varied mechanisms available to this strain to overcome antibiotic resistance and spread to other areas and/or transfer its resistance determinants are worrying. This is ultimately a risk to public health, evincing the need for antibiotic stewardship.
mSystemsBiochemistry, Genetics and Molecular Biology-Biochemistry
CiteScore
10.50
自引率
3.10%
发文量
308
审稿时长
13 weeks
期刊介绍:
mSystems™ will publish preeminent work that stems from applying technologies for high-throughput analyses to achieve insights into the metabolic and regulatory systems at the scale of both the single cell and microbial communities. The scope of mSystems™ encompasses all important biological and biochemical findings drawn from analyses of large data sets, as well as new computational approaches for deriving these insights. mSystems™ will welcome submissions from researchers who focus on the microbiome, genomics, metagenomics, transcriptomics, metabolomics, proteomics, glycomics, bioinformatics, and computational microbiology. mSystems™ will provide streamlined decisions, while carrying on ASM''s tradition of rigorous peer review.