Ashley J Ovens, Dingyi Yu, Toby A Dite, Bruce E Kemp, Jonathan S Oakhill
{"title":"Measuring Cellular Adenine Nucleotides by Liquid Chromatography-Coupled Mass Spectrometry.","authors":"Ashley J Ovens, Dingyi Yu, Toby A Dite, Bruce E Kemp, Jonathan S Oakhill","doi":"10.1007/978-1-0716-4284-9_1","DOIUrl":null,"url":null,"abstract":"<p><p>Adenine nucleotides (AXPs, also referred to as adenosines or adenylates) are a group of organic molecules including adenosine 5'- mono-, di-, and tri-phosphate (AMP, ADP, and ATP, respectively) that, combined, resembles an electrochemical storage cell to facilitate cellular energy storage and transfer. ATP, generated from ADP by photosynthesis, anaerobic respiration, and oxidative phosphorylation, powers many energy-requiring processes in the cell through hydrolysis of its terminal (γ) phosphate, whereas ADP is equilibrated with AMP and ATP by the adenylate kinase reaction. AXPs are major signaling molecules that regulate a wide range of anabolic and catabolic enzymes including AMP-activated protein kinase (AMPK), phosphofructokinase, and pyruvate dehydrogenase.Methods to determine concentrations of AXPs from cells and biological samples have historically relied on high-performance liquid chromatography (HPLC)/capillary electrophoresis techniques to measure [ATP] and [ADP]. However, due to its low basal concentrations, these techniques lack sufficient sensitivity to directly measure [AMP], which must be extrapolated using assumptions of adenylate kinase equilibrium that neglect AMP degradation and synthesis pathways. Here, we describe a detailed protocol to accurately measure [AXP] from cells by liquid chromatography-coupled mass spectrometry (LC/MS), applicable to a wide range of fields including our specific interest in AMPK-dependent metabolic regulation.</p>","PeriodicalId":18490,"journal":{"name":"Methods in molecular biology","volume":"2882 ","pages":"3-14"},"PeriodicalIF":0.0000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Methods in molecular biology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/978-1-0716-4284-9_1","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Biochemistry, Genetics and Molecular Biology","Score":null,"Total":0}
引用次数: 0
Abstract
Adenine nucleotides (AXPs, also referred to as adenosines or adenylates) are a group of organic molecules including adenosine 5'- mono-, di-, and tri-phosphate (AMP, ADP, and ATP, respectively) that, combined, resembles an electrochemical storage cell to facilitate cellular energy storage and transfer. ATP, generated from ADP by photosynthesis, anaerobic respiration, and oxidative phosphorylation, powers many energy-requiring processes in the cell through hydrolysis of its terminal (γ) phosphate, whereas ADP is equilibrated with AMP and ATP by the adenylate kinase reaction. AXPs are major signaling molecules that regulate a wide range of anabolic and catabolic enzymes including AMP-activated protein kinase (AMPK), phosphofructokinase, and pyruvate dehydrogenase.Methods to determine concentrations of AXPs from cells and biological samples have historically relied on high-performance liquid chromatography (HPLC)/capillary electrophoresis techniques to measure [ATP] and [ADP]. However, due to its low basal concentrations, these techniques lack sufficient sensitivity to directly measure [AMP], which must be extrapolated using assumptions of adenylate kinase equilibrium that neglect AMP degradation and synthesis pathways. Here, we describe a detailed protocol to accurately measure [AXP] from cells by liquid chromatography-coupled mass spectrometry (LC/MS), applicable to a wide range of fields including our specific interest in AMPK-dependent metabolic regulation.
期刊介绍:
For over 20 years, biological scientists have come to rely on the research protocols and methodologies in the critically acclaimed Methods in Molecular Biology series. The series was the first to introduce the step-by-step protocols approach that has become the standard in all biomedical protocol publishing. Each protocol is provided in readily-reproducible step-by-step fashion, opening with an introductory overview, a list of the materials and reagents needed to complete the experiment, and followed by a detailed procedure that is supported with a helpful notes section offering tips and tricks of the trade as well as troubleshooting advice.