Structural basis of receptor-binding adaptation of human-infecting H3N8 influenza A virus.

IF 4 2区 医学 Q2 VIROLOGY
Tianjiao Hao, Yufeng Xie, Yan Chai, Wei Zhang, Di Zhang, Jianxun Qi, Yi Shi, Hao Song, George F Gao
{"title":"Structural basis of receptor-binding adaptation of human-infecting H3N8 influenza A virus.","authors":"Tianjiao Hao, Yufeng Xie, Yan Chai, Wei Zhang, Di Zhang, Jianxun Qi, Yi Shi, Hao Song, George F Gao","doi":"10.1128/jvi.01065-24","DOIUrl":null,"url":null,"abstract":"<p><p>Recent avian-origin H3N8 influenza A virus (IAV) that have infected humans pose a potential public health concern. Alterations in the viral surface glycoprotein, hemagglutinin (HA), are typically required for IAVs to cross the species barrier for adaptation to a new host, but whether H3N8 has adapted to infect humans remains elusive. The observation of a degenerative codon in position 228 of HA in human H3N8 A/Henan/4-10/2022 protein sequence, which could be residue G or S, suggests a dynamic viral adaptation for human infection. Previously, we found this human-isolated virus has shown the ability to transmit between ferrets via respiratory droplets, with the HA-G228S substitution mutation emerging as a critical determinant for the airborne transmission of the virus in ferrets. Here, we investigated the receptor-binding properties of these two H3N8 HAs. Our results showed H3N8 HAs have dual receptor-binding properties with a preference for avian receptor binding, and G228S slightly increased binding to human receptors. Cryo-electron microscopy structures of the two H3N8 HAs with avian and human receptor analogs revealed the basis for dual receptor binding. Mutagenesis studies reveal that the Q226L mutation shifts H3N8 HA's receptor preference from avian to human, while the G228S substitution enhances binding to both receptor types. H3N8 exhibits distinct antigenic sites compared to H3N2, prompting concerns regarding vaccine efficacy. These findings suggest that the current H3N8 human isolates are yet to adapt for efficient human-to-human transmission and further continuous surveillance should be implemented.IMPORTANCEInfluenza virus transmission remains a public health concern currently. H3N8 subtype influenza A viruses infect humans and their HAs acquire the ability to bind to both human and avian receptors, posing a threat to human health. We have solved and analyzed the structural basis of dual receptor binding of recently human-infecting H3N8 HA, and we demonstrate that the G228S enhances human receptor binding and adaptation. We also found that HN/4-10 H3N8 HA has distinct antigenic sites, which challenges vaccine efficacy. Taken together, our work is critical to the prevention and control of human H3 influenza virus infection.</p>","PeriodicalId":17583,"journal":{"name":"Journal of Virology","volume":" ","pages":"e0106524"},"PeriodicalIF":4.0000,"publicationDate":"2025-02-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Virology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1128/jvi.01065-24","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"VIROLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Recent avian-origin H3N8 influenza A virus (IAV) that have infected humans pose a potential public health concern. Alterations in the viral surface glycoprotein, hemagglutinin (HA), are typically required for IAVs to cross the species barrier for adaptation to a new host, but whether H3N8 has adapted to infect humans remains elusive. The observation of a degenerative codon in position 228 of HA in human H3N8 A/Henan/4-10/2022 protein sequence, which could be residue G or S, suggests a dynamic viral adaptation for human infection. Previously, we found this human-isolated virus has shown the ability to transmit between ferrets via respiratory droplets, with the HA-G228S substitution mutation emerging as a critical determinant for the airborne transmission of the virus in ferrets. Here, we investigated the receptor-binding properties of these two H3N8 HAs. Our results showed H3N8 HAs have dual receptor-binding properties with a preference for avian receptor binding, and G228S slightly increased binding to human receptors. Cryo-electron microscopy structures of the two H3N8 HAs with avian and human receptor analogs revealed the basis for dual receptor binding. Mutagenesis studies reveal that the Q226L mutation shifts H3N8 HA's receptor preference from avian to human, while the G228S substitution enhances binding to both receptor types. H3N8 exhibits distinct antigenic sites compared to H3N2, prompting concerns regarding vaccine efficacy. These findings suggest that the current H3N8 human isolates are yet to adapt for efficient human-to-human transmission and further continuous surveillance should be implemented.IMPORTANCEInfluenza virus transmission remains a public health concern currently. H3N8 subtype influenza A viruses infect humans and their HAs acquire the ability to bind to both human and avian receptors, posing a threat to human health. We have solved and analyzed the structural basis of dual receptor binding of recently human-infecting H3N8 HA, and we demonstrate that the G228S enhances human receptor binding and adaptation. We also found that HN/4-10 H3N8 HA has distinct antigenic sites, which challenges vaccine efficacy. Taken together, our work is critical to the prevention and control of human H3 influenza virus infection.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Virology
Journal of Virology 医学-病毒学
CiteScore
10.10
自引率
7.40%
发文量
906
审稿时长
1 months
期刊介绍: Journal of Virology (JVI) explores the nature of the viruses of animals, archaea, bacteria, fungi, plants, and protozoa. We welcome papers on virion structure and assembly, viral genome replication and regulation of gene expression, genetic diversity and evolution, virus-cell interactions, cellular responses to infection, transformation and oncogenesis, gene delivery, viral pathogenesis and immunity, and vaccines and antiviral agents.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信