Lorenza Destro, Valentina Crippa, Daniela Gabbia, Marco Roverso, Sara Bogialli, Paolo Zardi, Giovanni Marzaro, Luca Mologni, Alfonso Zambon
{"title":"Discovery of selective, metabolically stable pyrazole-based FLT3 inhibitors for the treatment of acute myeloid leukemia.","authors":"Lorenza Destro, Valentina Crippa, Daniela Gabbia, Marco Roverso, Sara Bogialli, Paolo Zardi, Giovanni Marzaro, Luca Mologni, Alfonso Zambon","doi":"10.1039/d4md00956h","DOIUrl":null,"url":null,"abstract":"<p><p>Acute myeloid leukemia (AML) is the most prevalent form of acute leukemia in adults, representing a substantial medical need, as the standard of care has not changed for the past two decades, and the long-term outcome remains dismal for a large fraction of patients. Approximately 30% of AMLs carry activating mutations of the FLT3 kinase. Unfortunately, single-agent FLT3 inhibitor therapy has met limited clinical efficacy, underscoring a strong rationale for the development of more selective and more potent inhibitors. Here we present the design, synthesis and biological evaluation of a series of biphenyl substituted pyrazoyl-ureas, an underexplored scaffold in medicinal chemistry, as novel FLT3 inhibitors with a putative type II binding mode. Optimized compounds show nanomolar activity against isolated FLT3 (230 nM for compound 10q) and on FLT3-driven cell lines (280 nM and 18 nM for compound 10q against MV4.11 and MOLM-14 cells respectively), with no toxicity against control cell lines, limited metabolism in human microsomes and a reliable SAR; furthermore, profiling of compound 10q against a panel of kinases highlights c-Kit as the only other hit. Overall, we show that the series has a narrow selectivity profile and metabolic stability, and the mode of action of the inhibitors through FLT3 is confirmed by strong suppression of FLT3 and STAT5 phosphorylation.</p>","PeriodicalId":21462,"journal":{"name":"RSC medicinal chemistry","volume":" ","pages":""},"PeriodicalIF":4.1000,"publicationDate":"2025-01-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11843578/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"RSC medicinal chemistry","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1039/d4md00956h","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Acute myeloid leukemia (AML) is the most prevalent form of acute leukemia in adults, representing a substantial medical need, as the standard of care has not changed for the past two decades, and the long-term outcome remains dismal for a large fraction of patients. Approximately 30% of AMLs carry activating mutations of the FLT3 kinase. Unfortunately, single-agent FLT3 inhibitor therapy has met limited clinical efficacy, underscoring a strong rationale for the development of more selective and more potent inhibitors. Here we present the design, synthesis and biological evaluation of a series of biphenyl substituted pyrazoyl-ureas, an underexplored scaffold in medicinal chemistry, as novel FLT3 inhibitors with a putative type II binding mode. Optimized compounds show nanomolar activity against isolated FLT3 (230 nM for compound 10q) and on FLT3-driven cell lines (280 nM and 18 nM for compound 10q against MV4.11 and MOLM-14 cells respectively), with no toxicity against control cell lines, limited metabolism in human microsomes and a reliable SAR; furthermore, profiling of compound 10q against a panel of kinases highlights c-Kit as the only other hit. Overall, we show that the series has a narrow selectivity profile and metabolic stability, and the mode of action of the inhibitors through FLT3 is confirmed by strong suppression of FLT3 and STAT5 phosphorylation.