Discovery of selective, metabolically stable pyrazole-based FLT3 inhibitors for the treatment of acute myeloid leukemia.

IF 4.1 4区 医学 Q2 BIOCHEMISTRY & MOLECULAR BIOLOGY
Lorenza Destro, Valentina Crippa, Daniela Gabbia, Marco Roverso, Sara Bogialli, Paolo Zardi, Giovanni Marzaro, Luca Mologni, Alfonso Zambon
{"title":"Discovery of selective, metabolically stable pyrazole-based FLT3 inhibitors for the treatment of acute myeloid leukemia.","authors":"Lorenza Destro, Valentina Crippa, Daniela Gabbia, Marco Roverso, Sara Bogialli, Paolo Zardi, Giovanni Marzaro, Luca Mologni, Alfonso Zambon","doi":"10.1039/d4md00956h","DOIUrl":null,"url":null,"abstract":"<p><p>Acute myeloid leukemia (AML) is the most prevalent form of acute leukemia in adults, representing a substantial medical need, as the standard of care has not changed for the past two decades, and the long-term outcome remains dismal for a large fraction of patients. Approximately 30% of AMLs carry activating mutations of the FLT3 kinase. Unfortunately, single-agent FLT3 inhibitor therapy has met limited clinical efficacy, underscoring a strong rationale for the development of more selective and more potent inhibitors. Here we present the design, synthesis and biological evaluation of a series of biphenyl substituted pyrazoyl-ureas, an underexplored scaffold in medicinal chemistry, as novel FLT3 inhibitors with a putative type II binding mode. Optimized compounds show nanomolar activity against isolated FLT3 (230 nM for compound 10q) and on FLT3-driven cell lines (280 nM and 18 nM for compound 10q against MV4.11 and MOLM-14 cells respectively), with no toxicity against control cell lines, limited metabolism in human microsomes and a reliable SAR; furthermore, profiling of compound 10q against a panel of kinases highlights c-Kit as the only other hit. Overall, we show that the series has a narrow selectivity profile and metabolic stability, and the mode of action of the inhibitors through FLT3 is confirmed by strong suppression of FLT3 and STAT5 phosphorylation.</p>","PeriodicalId":21462,"journal":{"name":"RSC medicinal chemistry","volume":" ","pages":""},"PeriodicalIF":4.1000,"publicationDate":"2025-01-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11843578/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"RSC medicinal chemistry","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1039/d4md00956h","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Acute myeloid leukemia (AML) is the most prevalent form of acute leukemia in adults, representing a substantial medical need, as the standard of care has not changed for the past two decades, and the long-term outcome remains dismal for a large fraction of patients. Approximately 30% of AMLs carry activating mutations of the FLT3 kinase. Unfortunately, single-agent FLT3 inhibitor therapy has met limited clinical efficacy, underscoring a strong rationale for the development of more selective and more potent inhibitors. Here we present the design, synthesis and biological evaluation of a series of biphenyl substituted pyrazoyl-ureas, an underexplored scaffold in medicinal chemistry, as novel FLT3 inhibitors with a putative type II binding mode. Optimized compounds show nanomolar activity against isolated FLT3 (230 nM for compound 10q) and on FLT3-driven cell lines (280 nM and 18 nM for compound 10q against MV4.11 and MOLM-14 cells respectively), with no toxicity against control cell lines, limited metabolism in human microsomes and a reliable SAR; furthermore, profiling of compound 10q against a panel of kinases highlights c-Kit as the only other hit. Overall, we show that the series has a narrow selectivity profile and metabolic stability, and the mode of action of the inhibitors through FLT3 is confirmed by strong suppression of FLT3 and STAT5 phosphorylation.

求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
5.80
自引率
2.40%
发文量
129
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信