Machine Learning Prognostic Model for Post-Radical Resection Hepatocellular Carcinoma in Hepatitis B Patients.

IF 4.2 3区 医学 Q2 ONCOLOGY
Journal of Hepatocellular Carcinoma Pub Date : 2025-02-19 eCollection Date: 2025-01-01 DOI:10.2147/JHC.S495059
Dalong Zhu, Alimu Tulahong, Abuduhaiwaier Abuduhelili, Chang Liu, Ayinuer Aierken, Yanze Lin, Tiemin Jiang, Renyong Lin, Yingmei Shao, Tuerganaili Aji
{"title":"Machine Learning Prognostic Model for Post-Radical Resection Hepatocellular Carcinoma in Hepatitis B Patients.","authors":"Dalong Zhu, Alimu Tulahong, Abuduhaiwaier Abuduhelili, Chang Liu, Ayinuer Aierken, Yanze Lin, Tiemin Jiang, Renyong Lin, Yingmei Shao, Tuerganaili Aji","doi":"10.2147/JHC.S495059","DOIUrl":null,"url":null,"abstract":"<p><strong>Purpose: </strong>Primary liver cancer, predominantly hepatocellular carcinoma (HCC), constitutes a substantial global health challenge, characterized by a poor prognosis, particularly in regions with high prevalence of hepatitis B virus (HBV) infection, such as China. This study sought to develop and validate a machine learning-based prognostic model to predict survival outcomes in patients with HBV-related HCC following radical resection, with the potential to inform personalized treatment strategies.</p><p><strong>Patients and methods: </strong>This study retrospectively analyzed clinical data from 146 patients at Xinjiang Medical University and 75 patients from The Cancer Genome Atlas (TCGA) database. A prognostic model was developed using a machine learning algorithm and evaluated for predictive performance using the concordance index (C-index), calibration curve, decision curve analysis (DCA), and receiver operating characteristic (ROC) curves.</p><p><strong>Results: </strong>Key predictors for constructing the best model included body mass index (BMI), albumin (ALB) levels, surgical resection method (SRM), and the American Joint Committee on Cancer (AJCC) stage. The model achieved a C-index of 0.736 in the training set and performed well in both training and validation datasets. It accurately predicted 1-, 3-, and 5-year survival rates, with Area Under the Curve (AUC) values of 0.843, 0.797, and 0.758, respectively. Calibration curve analysis and Decision Curve Analysis (DCA) further validated the model's predictive capability, suggesting its potential use in clinical decision-making.</p><p><strong>Conclusion: </strong>The study highlights the importance of BMI, ALB, SRM, and AJCC staging in predicting HBV-related HCC outcomes. The machine learning model aids clinicians in making better treatment decisions, potentially enhancing patient outcomes.</p>","PeriodicalId":15906,"journal":{"name":"Journal of Hepatocellular Carcinoma","volume":"12 ","pages":"353-365"},"PeriodicalIF":4.2000,"publicationDate":"2025-02-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11847427/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Hepatocellular Carcinoma","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.2147/JHC.S495059","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"ONCOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Purpose: Primary liver cancer, predominantly hepatocellular carcinoma (HCC), constitutes a substantial global health challenge, characterized by a poor prognosis, particularly in regions with high prevalence of hepatitis B virus (HBV) infection, such as China. This study sought to develop and validate a machine learning-based prognostic model to predict survival outcomes in patients with HBV-related HCC following radical resection, with the potential to inform personalized treatment strategies.

Patients and methods: This study retrospectively analyzed clinical data from 146 patients at Xinjiang Medical University and 75 patients from The Cancer Genome Atlas (TCGA) database. A prognostic model was developed using a machine learning algorithm and evaluated for predictive performance using the concordance index (C-index), calibration curve, decision curve analysis (DCA), and receiver operating characteristic (ROC) curves.

Results: Key predictors for constructing the best model included body mass index (BMI), albumin (ALB) levels, surgical resection method (SRM), and the American Joint Committee on Cancer (AJCC) stage. The model achieved a C-index of 0.736 in the training set and performed well in both training and validation datasets. It accurately predicted 1-, 3-, and 5-year survival rates, with Area Under the Curve (AUC) values of 0.843, 0.797, and 0.758, respectively. Calibration curve analysis and Decision Curve Analysis (DCA) further validated the model's predictive capability, suggesting its potential use in clinical decision-making.

Conclusion: The study highlights the importance of BMI, ALB, SRM, and AJCC staging in predicting HBV-related HCC outcomes. The machine learning model aids clinicians in making better treatment decisions, potentially enhancing patient outcomes.

乙型肝炎患者肝细胞癌根治后的机器学习预后模型。
目的:原发性肝癌,主要是肝细胞癌(HCC),构成了重大的全球健康挑战,其特点是预后差,特别是在乙型肝炎病毒(HBV)感染高发地区,如中国。本研究旨在开发和验证一种基于机器学习的预后模型,以预测hbv相关HCC根治性切除术后患者的生存结果,并有可能为个性化治疗策略提供信息。患者和方法:本研究回顾性分析了新疆医科大学146例患者的临床资料和癌症基因组图谱(TCGA)数据库中75例患者的临床资料。使用机器学习算法建立预后模型,并使用一致性指数(C-index)、校准曲线、决策曲线分析(DCA)和受试者工作特征(ROC)曲线评估预测性能。结果:构建最佳模型的关键预测因子包括身体质量指数(BMI)、白蛋白(ALB)水平、手术切除方法(SRM)和美国癌症联合委员会(AJCC)分期。该模型在训练集上的c指数为0.736,在训练集和验证集上均表现良好。它准确预测了1年、3年和5年生存率,曲线下面积(AUC)值分别为0.843、0.797和0.758。校准曲线分析和决策曲线分析(DCA)进一步验证了该模型的预测能力,提示其在临床决策中的潜在应用。结论:该研究强调了BMI、ALB、SRM和AJCC分期在预测hbv相关HCC结局中的重要性。机器学习模型帮助临床医生做出更好的治疗决策,潜在地提高患者的治疗效果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
0.50
自引率
2.40%
发文量
108
审稿时长
16 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信