Machine Learning Prognostic Model for Post-Radical Resection Hepatocellular Carcinoma in Hepatitis B Patients.

IF 4.2 3区 医学 Q2 ONCOLOGY
Journal of Hepatocellular Carcinoma Pub Date : 2025-02-19 eCollection Date: 2025-01-01 DOI:10.2147/JHC.S495059
Dalong Zhu, Alimu Tulahong, Abuduhaiwaier Abuduhelili, Chang Liu, Ayinuer Aierken, Yanze Lin, Tiemin Jiang, Renyong Lin, Yingmei Shao, Tuerganaili Aji
{"title":"Machine Learning Prognostic Model for Post-Radical Resection Hepatocellular Carcinoma in Hepatitis B Patients.","authors":"Dalong Zhu, Alimu Tulahong, Abuduhaiwaier Abuduhelili, Chang Liu, Ayinuer Aierken, Yanze Lin, Tiemin Jiang, Renyong Lin, Yingmei Shao, Tuerganaili Aji","doi":"10.2147/JHC.S495059","DOIUrl":null,"url":null,"abstract":"<p><strong>Purpose: </strong>Primary liver cancer, predominantly hepatocellular carcinoma (HCC), constitutes a substantial global health challenge, characterized by a poor prognosis, particularly in regions with high prevalence of hepatitis B virus (HBV) infection, such as China. This study sought to develop and validate a machine learning-based prognostic model to predict survival outcomes in patients with HBV-related HCC following radical resection, with the potential to inform personalized treatment strategies.</p><p><strong>Patients and methods: </strong>This study retrospectively analyzed clinical data from 146 patients at Xinjiang Medical University and 75 patients from The Cancer Genome Atlas (TCGA) database. A prognostic model was developed using a machine learning algorithm and evaluated for predictive performance using the concordance index (C-index), calibration curve, decision curve analysis (DCA), and receiver operating characteristic (ROC) curves.</p><p><strong>Results: </strong>Key predictors for constructing the best model included body mass index (BMI), albumin (ALB) levels, surgical resection method (SRM), and the American Joint Committee on Cancer (AJCC) stage. The model achieved a C-index of 0.736 in the training set and performed well in both training and validation datasets. It accurately predicted 1-, 3-, and 5-year survival rates, with Area Under the Curve (AUC) values of 0.843, 0.797, and 0.758, respectively. Calibration curve analysis and Decision Curve Analysis (DCA) further validated the model's predictive capability, suggesting its potential use in clinical decision-making.</p><p><strong>Conclusion: </strong>The study highlights the importance of BMI, ALB, SRM, and AJCC staging in predicting HBV-related HCC outcomes. The machine learning model aids clinicians in making better treatment decisions, potentially enhancing patient outcomes.</p>","PeriodicalId":15906,"journal":{"name":"Journal of Hepatocellular Carcinoma","volume":"12 ","pages":"353-365"},"PeriodicalIF":4.2000,"publicationDate":"2025-02-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11847427/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Hepatocellular Carcinoma","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.2147/JHC.S495059","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"ONCOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Purpose: Primary liver cancer, predominantly hepatocellular carcinoma (HCC), constitutes a substantial global health challenge, characterized by a poor prognosis, particularly in regions with high prevalence of hepatitis B virus (HBV) infection, such as China. This study sought to develop and validate a machine learning-based prognostic model to predict survival outcomes in patients with HBV-related HCC following radical resection, with the potential to inform personalized treatment strategies.

Patients and methods: This study retrospectively analyzed clinical data from 146 patients at Xinjiang Medical University and 75 patients from The Cancer Genome Atlas (TCGA) database. A prognostic model was developed using a machine learning algorithm and evaluated for predictive performance using the concordance index (C-index), calibration curve, decision curve analysis (DCA), and receiver operating characteristic (ROC) curves.

Results: Key predictors for constructing the best model included body mass index (BMI), albumin (ALB) levels, surgical resection method (SRM), and the American Joint Committee on Cancer (AJCC) stage. The model achieved a C-index of 0.736 in the training set and performed well in both training and validation datasets. It accurately predicted 1-, 3-, and 5-year survival rates, with Area Under the Curve (AUC) values of 0.843, 0.797, and 0.758, respectively. Calibration curve analysis and Decision Curve Analysis (DCA) further validated the model's predictive capability, suggesting its potential use in clinical decision-making.

Conclusion: The study highlights the importance of BMI, ALB, SRM, and AJCC staging in predicting HBV-related HCC outcomes. The machine learning model aids clinicians in making better treatment decisions, potentially enhancing patient outcomes.

求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
0.50
自引率
2.40%
发文量
108
审稿时长
16 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信