Detection of Epileptogenic Focal Cortical Dysplasia Using Graph Neural Networks: A MELD Study.

IF 20.4 1区 医学 Q1 CLINICAL NEUROLOGY
Mathilde Ripart, Hannah Spitzer, Logan Z J Williams, Lennart Walger, Andrew Chen, Antonio Napolitano, Camilla Rossi-Espagnet, Stephen T Foldes, Wenhan Hu, Jiajie Mo, Marcus Likeman, Theodor Rüber, Maria Eugenia Caligiuri, Antonio Gambardella, Christopher Guttler, Anna Tietze, Matteo Lenge, Renzo Guerrini, Nathan T Cohen, Irene Wang, Ane Kloster, Lars H Pinborg, Khalid Hamandi, Graeme Jackson, Domenico Tortora, Martin Tisdall, Estefania Conde-Blanco, Jose C Pariente, Carmen Perez-Enriquez, Sofia Gonzalez-Ortiz, Nandini Mullatti, Katy Vecchiato, Yawu Liu, Reetta Kalviainen, Drahoslav Sokol, Jay Shetty, Benjamin Sinclair, Lucy Vivash, Anna Willard, Gavin P Winston, Clarissa Yasuda, Fernando Cendes, Russell T Shinohara, John S Duncan, J Helen Cross, Torsten Baldeweg, Emma C Robinson, Juan Eugenio Iglesias, Sophie Adler, Konrad Wagstyl, Abdulah Fawaz, Alessandro De Benedictis, Luca De Palma, Kai Zhang, Angelo Labate, Carmen Barba, Xiaozhen You, William D Gaillard, Yingying Tang, Shan Wang, Shirin Davies, Mira Semmelroch, Mariasavina Severino, Pasquale Striano, Aswin Chari, Felice D'Arco, Kshitij Mankad, Nuria Bargallo, Saul Pascual-Diaz, Ignacio Delgado-Martinez, Jonathan O'Muircheartaigh, Eugenio Abela, Jothy Kandasamy, Ailsa McLellan, Patricia Desmond, Elaine Lui, Terence J O'Brien, Kirstie Whitaker
{"title":"Detection of Epileptogenic Focal Cortical Dysplasia Using Graph Neural Networks: A MELD Study.","authors":"Mathilde Ripart, Hannah Spitzer, Logan Z J Williams, Lennart Walger, Andrew Chen, Antonio Napolitano, Camilla Rossi-Espagnet, Stephen T Foldes, Wenhan Hu, Jiajie Mo, Marcus Likeman, Theodor Rüber, Maria Eugenia Caligiuri, Antonio Gambardella, Christopher Guttler, Anna Tietze, Matteo Lenge, Renzo Guerrini, Nathan T Cohen, Irene Wang, Ane Kloster, Lars H Pinborg, Khalid Hamandi, Graeme Jackson, Domenico Tortora, Martin Tisdall, Estefania Conde-Blanco, Jose C Pariente, Carmen Perez-Enriquez, Sofia Gonzalez-Ortiz, Nandini Mullatti, Katy Vecchiato, Yawu Liu, Reetta Kalviainen, Drahoslav Sokol, Jay Shetty, Benjamin Sinclair, Lucy Vivash, Anna Willard, Gavin P Winston, Clarissa Yasuda, Fernando Cendes, Russell T Shinohara, John S Duncan, J Helen Cross, Torsten Baldeweg, Emma C Robinson, Juan Eugenio Iglesias, Sophie Adler, Konrad Wagstyl, Abdulah Fawaz, Alessandro De Benedictis, Luca De Palma, Kai Zhang, Angelo Labate, Carmen Barba, Xiaozhen You, William D Gaillard, Yingying Tang, Shan Wang, Shirin Davies, Mira Semmelroch, Mariasavina Severino, Pasquale Striano, Aswin Chari, Felice D'Arco, Kshitij Mankad, Nuria Bargallo, Saul Pascual-Diaz, Ignacio Delgado-Martinez, Jonathan O'Muircheartaigh, Eugenio Abela, Jothy Kandasamy, Ailsa McLellan, Patricia Desmond, Elaine Lui, Terence J O'Brien, Kirstie Whitaker","doi":"10.1001/jamaneurol.2024.5406","DOIUrl":null,"url":null,"abstract":"<p><strong>Importance: </strong>A leading cause of surgically remediable, drug-resistant focal epilepsy is focal cortical dysplasia (FCD). FCD is challenging to visualize and often considered magnetic resonance imaging (MRI) negative. Existing automated methods for FCD detection are limited by high numbers of false-positive predictions, hampering their clinical utility.</p><p><strong>Objective: </strong>To evaluate the efficacy and interpretability of graph neural networks in automatically detecting FCD lesions on MRI scans.</p><p><strong>Design, setting, and participants: </strong>In this multicenter diagnostic study, retrospective MRI data were collated from 23 epilepsy centers worldwide between 2018 and 2022, as part of the Multicenter Epilepsy Lesion Detection (MELD) Project, and analyzed in 2023. Data from 20 centers were split equally into training and testing cohorts, with data from 3 centers withheld for site-independent testing. A graph neural network (MELD Graph) was trained to identify FCD on surface-based features. Network performance was compared with an existing algorithm. Feature analysis, saliencies, and confidence scores were used to interpret network predictions. In total, 34 surface-based MRI features and manual lesion masks were collated from participants, 703 patients with FCD-related epilepsy and 482 controls, and 57 participants were excluded during MRI quality control.</p><p><strong>Main outcomes and measures: </strong>Sensitivity, specificity, and positive predictive value (PPV) of automatically identified lesions.</p><p><strong>Results: </strong>In the test dataset, the MELD Graph had a sensitivity of 81.6% in histopathologically confirmed patients seizure-free 1 year after surgery and 63.7% in MRI-negative patients with FCD. The PPV of putative lesions from the 260 patients in the test dataset (125 female [48%] and 135 male [52%]; mean age, 18.0 [IQR, 11.0-29.0] years) was 67% (70% sensitivity; 60% specificity), compared with 39% (67% sensitivity; 54% specificity) using an existing baseline algorithm. In the independent test cohort (116 patients; 62 female [53%] and 54 male [47%]; mean age, 22.5 [IQR, 13.5-27.5] years), the PPV was 76% (72% sensitivity; 56% specificity), compared with 46% (77% sensitivity; 47% specificity) using the baseline algorithm. Interpretable reports characterize lesion location, size, confidence, and salient features.</p><p><strong>Conclusions and relevance: </strong>In this study, the MELD Graph represented a state-of-the-art, openly available, and interpretable tool for FCD detection on MRI scans with significant improvements in PPV. Its clinical implementation holds promise for early diagnosis and improved management of focal epilepsy, potentially leading to better patient outcomes.</p>","PeriodicalId":14677,"journal":{"name":"JAMA neurology","volume":" ","pages":""},"PeriodicalIF":20.4000,"publicationDate":"2025-02-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11851297/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"JAMA neurology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1001/jamaneurol.2024.5406","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CLINICAL NEUROLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Importance: A leading cause of surgically remediable, drug-resistant focal epilepsy is focal cortical dysplasia (FCD). FCD is challenging to visualize and often considered magnetic resonance imaging (MRI) negative. Existing automated methods for FCD detection are limited by high numbers of false-positive predictions, hampering their clinical utility.

Objective: To evaluate the efficacy and interpretability of graph neural networks in automatically detecting FCD lesions on MRI scans.

Design, setting, and participants: In this multicenter diagnostic study, retrospective MRI data were collated from 23 epilepsy centers worldwide between 2018 and 2022, as part of the Multicenter Epilepsy Lesion Detection (MELD) Project, and analyzed in 2023. Data from 20 centers were split equally into training and testing cohorts, with data from 3 centers withheld for site-independent testing. A graph neural network (MELD Graph) was trained to identify FCD on surface-based features. Network performance was compared with an existing algorithm. Feature analysis, saliencies, and confidence scores were used to interpret network predictions. In total, 34 surface-based MRI features and manual lesion masks were collated from participants, 703 patients with FCD-related epilepsy and 482 controls, and 57 participants were excluded during MRI quality control.

Main outcomes and measures: Sensitivity, specificity, and positive predictive value (PPV) of automatically identified lesions.

Results: In the test dataset, the MELD Graph had a sensitivity of 81.6% in histopathologically confirmed patients seizure-free 1 year after surgery and 63.7% in MRI-negative patients with FCD. The PPV of putative lesions from the 260 patients in the test dataset (125 female [48%] and 135 male [52%]; mean age, 18.0 [IQR, 11.0-29.0] years) was 67% (70% sensitivity; 60% specificity), compared with 39% (67% sensitivity; 54% specificity) using an existing baseline algorithm. In the independent test cohort (116 patients; 62 female [53%] and 54 male [47%]; mean age, 22.5 [IQR, 13.5-27.5] years), the PPV was 76% (72% sensitivity; 56% specificity), compared with 46% (77% sensitivity; 47% specificity) using the baseline algorithm. Interpretable reports characterize lesion location, size, confidence, and salient features.

Conclusions and relevance: In this study, the MELD Graph represented a state-of-the-art, openly available, and interpretable tool for FCD detection on MRI scans with significant improvements in PPV. Its clinical implementation holds promise for early diagnosis and improved management of focal epilepsy, potentially leading to better patient outcomes.

重要性:局灶性皮质发育不良(FCD)是可通过手术治疗的耐药性局灶性癫痫的主要病因。FCD 的可视化具有挑战性,通常被认为是磁共振成像 (MRI) 阴性。现有的 FCD 自动检测方法受限于大量的假阳性预测,影响了其临床实用性:评估图神经网络自动检测 MRI 扫描中 FCD 病变的有效性和可解释性:在这项多中心诊断研究中,作为多中心癫痫病灶检测(MELD)项目的一部分,在2018年至2022年期间整理了来自全球23个癫痫中心的回顾性MRI数据,并于2023年进行了分析。来自20个中心的数据被平均分成训练组和测试组,其中3个中心的数据被扣留用于独立于研究地点的测试。对图形神经网络(MELD Graph)进行了训练,以识别基于表面特征的 FCD。网络性能与现有算法进行了比较。特征分析、突出度和置信度分数用于解释网络预测。在核磁共振成像质量控制过程中,57名参与者被排除在外:自动识别病灶的灵敏度、特异性和阳性预测值(PPV):在测试数据集中,MELD图谱对组织病理学确诊的术后1年无癫痫发作患者的灵敏度为81.6%,对MRI阴性的FCD患者的灵敏度为63.7%。测试数据集中 260 名患者(125 名女性 [48%] 和 135 名男性 [52%];平均年龄 18.0 [IQR, 11.0-29.0] 岁)推测病变的 PPV 为 67%(灵敏度 70%;特异度 60%),而使用现有基线算法的 PPV 为 39%(灵敏度 67%;特异度 54%)。在独立测试队列(116 名患者;62 名女性 [53%] 和 54 名男性 [47%];平均年龄 22.5 [IQR, 13.5-27.5] 岁)中,PPV 为 76%(灵敏度 72%;特异度 56%),而使用基线算法的 PPV 为 46%(灵敏度 77%;特异度 47%)。可解读的报告描述了病变位置、大小、可信度和突出特征:在这项研究中,MELD 图形代表了一种最先进的、公开可用的、可解释的工具,用于在 MRI 扫描中检测 FCD,并显著提高了 PPV。它的临床应用为早期诊断和改善局灶性癫痫的管理带来了希望,有可能为患者带来更好的治疗效果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
JAMA neurology
JAMA neurology CLINICAL NEUROLOGY-
CiteScore
41.90
自引率
1.70%
发文量
250
期刊介绍: JAMA Neurology is an international peer-reviewed journal for physicians caring for people with neurologic disorders and those interested in the structure and function of the normal and diseased nervous system. The Archives of Neurology & Psychiatry began publication in 1919 and, in 1959, became 2 separate journals: Archives of Neurology and Archives of General Psychiatry. In 2013, their names changed to JAMA Neurology and JAMA Psychiatry, respectively. JAMA Neurology is a member of the JAMA Network, a consortium of peer-reviewed, general medical and specialty publications.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信