Modulating the PCET process via optimizing the local microenvironment of a CdS@NiV-LDH heterojunction for CO2 reduction in tunable green syngas photosynthesis†

IF 7.6 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Senlin Zhang, Yuheng Ma, Changqiang Yu, Zhaohui Huang, Ruoning Zhan, Yingxinjie Wang, Xiuqiang Xie and Nan Zhang
{"title":"Modulating the PCET process via optimizing the local microenvironment of a CdS@NiV-LDH heterojunction for CO2 reduction in tunable green syngas photosynthesis†","authors":"Senlin Zhang, Yuheng Ma, Changqiang Yu, Zhaohui Huang, Ruoning Zhan, Yingxinjie Wang, Xiuqiang Xie and Nan Zhang","doi":"10.1039/D4SC07856J","DOIUrl":null,"url":null,"abstract":"<p >Photoconversion of CO<small><sub>2</sub></small> and H<small><sub>2</sub></small>O into syngas (CO + H<small><sub>2</sub></small>) for the Fischer–Tropsch reaction is considered a feasible plan to address global energy requirements in times of global warming. However, the production of syngas with high activity and adjustable proportion is challenging mainly due to the less efficient multi-step proton-coupled electron transfer (PCET) process owing to the unfavorable local microenvironment of photocatalysts. Herein, an S-scheme CdS@NiV-LDH (HNV) heterojunction is constructed through mild wet-chemistry methods, and NiV-LDH nanosheets are uniformly grown <em>in situ</em> on the surface of hollow cubic CdS (HCC). The as-prepared three-dimensional hierarchical architecture of the HNV photocatalyst leads to a controllable CO/H<small><sub>2</sub></small> ratio ranging from 0.2 to 1, and the CO and H<small><sub>2</sub></small> production rate of the optimal HNV-4 heterojunction can reach 1163.8 μmol g<small><sup>−1</sup></small> h<small><sup>−1</sup></small> and 1334.6 μmol g<small><sup>−1</sup></small> h<small><sup>−1</sup></small>, respectively. X-ray photoelectron spectroscopy, electron spin spectroscopy, and photo-deposition platinum metal test show that the photogenerated charge carriers in HNV follow an S-scheme charge transfer mechanism. This significantly improves the spatial separation of the photogenerated electron–hole pairs <em>via</em> the built-in electric field that modifies the electric field microenvironment of the HNV photocatalyst to accelerate the photoreduction process. Meanwhile, the NiV-LDH nanosheets on the external surface act as CO<small><sub>2</sub></small> enricher and H<small><sub>2</sub></small>O moderator that adjusts the reaction microenvironment to speed up the PCET process by increasing the local CO<small><sub>2</sub></small> concentration and facilitating *COOH intermediate generation in the HNV heterojunction. This work opens a new horizon for exploring novel heterogeneous photocatalysts toward enhanced visible-light-driven CO<small><sub>2</sub></small> conversion to tunable green syngas.</p>","PeriodicalId":9909,"journal":{"name":"Chemical Science","volume":" 12","pages":" 5241-5251"},"PeriodicalIF":7.6000,"publicationDate":"2025-02-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11844268/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemical Science","FirstCategoryId":"92","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2025/sc/d4sc07856j","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Photoconversion of CO2 and H2O into syngas (CO + H2) for the Fischer–Tropsch reaction is considered a feasible plan to address global energy requirements in times of global warming. However, the production of syngas with high activity and adjustable proportion is challenging mainly due to the less efficient multi-step proton-coupled electron transfer (PCET) process owing to the unfavorable local microenvironment of photocatalysts. Herein, an S-scheme CdS@NiV-LDH (HNV) heterojunction is constructed through mild wet-chemistry methods, and NiV-LDH nanosheets are uniformly grown in situ on the surface of hollow cubic CdS (HCC). The as-prepared three-dimensional hierarchical architecture of the HNV photocatalyst leads to a controllable CO/H2 ratio ranging from 0.2 to 1, and the CO and H2 production rate of the optimal HNV-4 heterojunction can reach 1163.8 μmol g−1 h−1 and 1334.6 μmol g−1 h−1, respectively. X-ray photoelectron spectroscopy, electron spin spectroscopy, and photo-deposition platinum metal test show that the photogenerated charge carriers in HNV follow an S-scheme charge transfer mechanism. This significantly improves the spatial separation of the photogenerated electron–hole pairs via the built-in electric field that modifies the electric field microenvironment of the HNV photocatalyst to accelerate the photoreduction process. Meanwhile, the NiV-LDH nanosheets on the external surface act as CO2 enricher and H2O moderator that adjusts the reaction microenvironment to speed up the PCET process by increasing the local CO2 concentration and facilitating *COOH intermediate generation in the HNV heterojunction. This work opens a new horizon for exploring novel heterogeneous photocatalysts toward enhanced visible-light-driven CO2 conversion to tunable green syngas.

Abstract Image

通过优化CdS@NiV-LDH异质结的局部微环境来调节PCET过程,以减少可调绿色合成气光合作用中的CO2。
在全球变暖的情况下,将 CO2 和 H2O 光转化为合成气(CO + H2)进行费托合成反应被认为是解决全球能源需求的可行方案。然而,由于光催化剂的局部微环境不利,多步质子耦合电子转移(PCET)过程的效率较低,因此生产高活性和可调节比例的合成气具有挑战性。本文通过温和的湿化学方法构建了S型CdS@NiV-LDH(HNV)异质结,并在中空立方体CdS(HCC)表面原位均匀生长了NiV-LDH纳米片。所制备的 HNV 光催化剂的三维分层结构使 CO/H2 比可控,范围在 0.2 到 1 之间,最佳 HNV-4 异质结的 CO 和 H2 产率分别达到 1163.8 μmol g-1 h-1 和 1334.6 μmol g-1 h-1。X 射线光电子能谱、电子自旋光谱和光沉积铂金属测试表明,HNV 中光生成的电荷载流子遵循 S 型电荷转移机制。通过内置电场改变 HNV 光催化剂的电场微环境,这大大提高了光生电子-空穴对的空间分离,加速了光生还原过程。同时,外表面的 NiV-LDH 纳米片起到了二氧化碳富集剂和 H2O 调节剂的作用,通过增加 HNV 异质结中的局部二氧化碳浓度和促进 *COOH 中间产物的生成,调整反应微环境以加速 PCET 过程。这项工作为探索新型异质光催化剂开辟了新天地,有助于增强可见光驱动的二氧化碳转化为可调绿色合成气。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Chemical Science
Chemical Science CHEMISTRY, MULTIDISCIPLINARY-
CiteScore
14.40
自引率
4.80%
发文量
1352
审稿时长
2.1 months
期刊介绍: Chemical Science is a journal that encompasses various disciplines within the chemical sciences. Its scope includes publishing ground-breaking research with significant implications for its respective field, as well as appealing to a wider audience in related areas. To be considered for publication, articles must showcase innovative and original advances in their field of study and be presented in a manner that is understandable to scientists from diverse backgrounds. However, the journal generally does not publish highly specialized research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信