Tianhao Zhang, Ying Li, Ertao Zhai, Risheng Zhao, Yan Qian, Zhixin Huang, Yinan Liu, Zeyu Zhao, Xiang Xu, Jianqiu Liu, Zikang Li, Zhi Liang, Ran Wei, Linying Ye, Jinping Ma, Qingping Wu, Jianhui Chen, Shirong Cai
{"title":"Intratumoral Fusobacterium nucleatum Recruits Tumor-Associated Neutrophils to Promote Gastric Cancer Progression and Immune Evasion.","authors":"Tianhao Zhang, Ying Li, Ertao Zhai, Risheng Zhao, Yan Qian, Zhixin Huang, Yinan Liu, Zeyu Zhao, Xiang Xu, Jianqiu Liu, Zikang Li, Zhi Liang, Ran Wei, Linying Ye, Jinping Ma, Qingping Wu, Jianhui Chen, Shirong Cai","doi":"10.1158/0008-5472.CAN-24-2580","DOIUrl":null,"url":null,"abstract":"<p><p>Intratumoral microbiota can impact the development and progression of many types of cancer, including gastric cancer (GC). A better understanding of the precise mechanisms by which microbiota support GC could lead to improved therapeutic approaches. Here, we investigated the effect of intratumoral microbiota on the tumor immune microenvironment (TIME) during GC malignant progression. Analysis of human GC tissues with 16S rRNA amplicon sequencing revealed that Fusobacterium nucleatum (F. nucleatum) was significantly enriched in GC tissues with lymph node metastasis and correlated with a poor prognosis. F. nucleatum infection spontaneously induced chronic gastritis and promoted gastric mucosa dysplasia in mice. Furthermore, GC cells infected with F. nucleatum showed accelerated growth in immunocompetent mice compared to immunodeficient mice. Single-cell RNA sequencing uncovered that F. nucleatum recruited tumor-associated neutrophils (TANs) to reshape the tumor immune microenvironment. Mechanistically, F. nucleatum invaded GC cells and activated IL-17/NF-κB/RelB signaling, inducing TAN recruitment. F. nucleatum also stimulated TAN differentiation into the pro-tumoral subtype and subsequent promotion of PD-L1 expression, further facilitating GC immune evasion while also enhancing the efficacy of anti-PD-L1 antibody therapy. Together, this data uncovers mechanisms by which F. nucleatum affects GC immune evasion and immunotherapy efficacy, providing insights for developing effective treatment strategies.</p>","PeriodicalId":9441,"journal":{"name":"Cancer research","volume":" ","pages":""},"PeriodicalIF":12.5000,"publicationDate":"2025-02-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cancer research","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1158/0008-5472.CAN-24-2580","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ONCOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Intratumoral microbiota can impact the development and progression of many types of cancer, including gastric cancer (GC). A better understanding of the precise mechanisms by which microbiota support GC could lead to improved therapeutic approaches. Here, we investigated the effect of intratumoral microbiota on the tumor immune microenvironment (TIME) during GC malignant progression. Analysis of human GC tissues with 16S rRNA amplicon sequencing revealed that Fusobacterium nucleatum (F. nucleatum) was significantly enriched in GC tissues with lymph node metastasis and correlated with a poor prognosis. F. nucleatum infection spontaneously induced chronic gastritis and promoted gastric mucosa dysplasia in mice. Furthermore, GC cells infected with F. nucleatum showed accelerated growth in immunocompetent mice compared to immunodeficient mice. Single-cell RNA sequencing uncovered that F. nucleatum recruited tumor-associated neutrophils (TANs) to reshape the tumor immune microenvironment. Mechanistically, F. nucleatum invaded GC cells and activated IL-17/NF-κB/RelB signaling, inducing TAN recruitment. F. nucleatum also stimulated TAN differentiation into the pro-tumoral subtype and subsequent promotion of PD-L1 expression, further facilitating GC immune evasion while also enhancing the efficacy of anti-PD-L1 antibody therapy. Together, this data uncovers mechanisms by which F. nucleatum affects GC immune evasion and immunotherapy efficacy, providing insights for developing effective treatment strategies.
期刊介绍:
Cancer Research, published by the American Association for Cancer Research (AACR), is a journal that focuses on impactful original studies, reviews, and opinion pieces relevant to the broad cancer research community. Manuscripts that present conceptual or technological advances leading to insights into cancer biology are particularly sought after. The journal also places emphasis on convergence science, which involves bridging multiple distinct areas of cancer research.
With primary subsections including Cancer Biology, Cancer Immunology, Cancer Metabolism and Molecular Mechanisms, Translational Cancer Biology, Cancer Landscapes, and Convergence Science, Cancer Research has a comprehensive scope. It is published twice a month and has one volume per year, with a print ISSN of 0008-5472 and an online ISSN of 1538-7445.
Cancer Research is abstracted and/or indexed in various databases and platforms, including BIOSIS Previews (R) Database, MEDLINE, Current Contents/Life Sciences, Current Contents/Clinical Medicine, Science Citation Index, Scopus, and Web of Science.