Simon Arhar, Johanna Pirchner, Holly Stolterfoht-Stock, Karin Reicher, Robert Kourist, Anita Emmerstorfer-Augustin
{"title":"CnRed: Efficient, Marker-free Genome Engineering of <i>Cupriavidus necator</i> H16 by Adapted Lambda Red Recombineering.","authors":"Simon Arhar, Johanna Pirchner, Holly Stolterfoht-Stock, Karin Reicher, Robert Kourist, Anita Emmerstorfer-Augustin","doi":"10.1021/acssynbio.4c00757","DOIUrl":null,"url":null,"abstract":"<p><p>Due to its ability to utilize carbon dioxide, native intracellular accumulation of bioplastic precursors, and a high protein content, the bacterium <i>Cupriavidus necator</i> offers potential solutions for social problems tackled by modern biotechnology. Yet, engineering of high-performing chemolithotrophic production strains has so far been hindered by the lack of adequate genome editing methods. In this work we present the establishment of a lambda Red recombineering system for use in <i>Cupriavidus necator</i> H16. In combination with electroporation as DNA delivery system, it enables an efficient and fast gene deletion methodology utilizing either suicide plasmids or, for the first time, linear PCR product. The novel lambda Red system was validated for the modification of three different genomic loci and, as a proof-of-concept, ultimately utilized for stable genomic integration of <i>Escherichia coli</i> phytase gene <i>appA</i> into the <i>phaC1</i> locus. A Cre/<i>loxP</i> system further enabled efficient marker recycling. The combination of a minimal transformation protocol with lambda Red recombineering and a Cre/<i>loxP</i> system offers a robust, freedom-to-operate synthetic biology tool in an increasingly important bacterial production host. This approach simplifies and accelerates genome engineering in <i>C. necator</i> and is expected to significantly enhance future strain development efforts.</p>","PeriodicalId":26,"journal":{"name":"ACS Synthetic Biology","volume":" ","pages":"842-854"},"PeriodicalIF":3.7000,"publicationDate":"2025-03-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11934132/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Synthetic Biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1021/acssynbio.4c00757","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/2/24 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0
Abstract
Due to its ability to utilize carbon dioxide, native intracellular accumulation of bioplastic precursors, and a high protein content, the bacterium Cupriavidus necator offers potential solutions for social problems tackled by modern biotechnology. Yet, engineering of high-performing chemolithotrophic production strains has so far been hindered by the lack of adequate genome editing methods. In this work we present the establishment of a lambda Red recombineering system for use in Cupriavidus necator H16. In combination with electroporation as DNA delivery system, it enables an efficient and fast gene deletion methodology utilizing either suicide plasmids or, for the first time, linear PCR product. The novel lambda Red system was validated for the modification of three different genomic loci and, as a proof-of-concept, ultimately utilized for stable genomic integration of Escherichia coli phytase gene appA into the phaC1 locus. A Cre/loxP system further enabled efficient marker recycling. The combination of a minimal transformation protocol with lambda Red recombineering and a Cre/loxP system offers a robust, freedom-to-operate synthetic biology tool in an increasingly important bacterial production host. This approach simplifies and accelerates genome engineering in C. necator and is expected to significantly enhance future strain development efforts.
期刊介绍:
The journal is particularly interested in studies on the design and synthesis of new genetic circuits and gene products; computational methods in the design of systems; and integrative applied approaches to understanding disease and metabolism.
Topics may include, but are not limited to:
Design and optimization of genetic systems
Genetic circuit design and their principles for their organization into programs
Computational methods to aid the design of genetic systems
Experimental methods to quantify genetic parts, circuits, and metabolic fluxes
Genetic parts libraries: their creation, analysis, and ontological representation
Protein engineering including computational design
Metabolic engineering and cellular manufacturing, including biomass conversion
Natural product access, engineering, and production
Creative and innovative applications of cellular programming
Medical applications, tissue engineering, and the programming of therapeutic cells
Minimal cell design and construction
Genomics and genome replacement strategies
Viral engineering
Automated and robotic assembly platforms for synthetic biology
DNA synthesis methodologies
Metagenomics and synthetic metagenomic analysis
Bioinformatics applied to gene discovery, chemoinformatics, and pathway construction
Gene optimization
Methods for genome-scale measurements of transcription and metabolomics
Systems biology and methods to integrate multiple data sources
in vitro and cell-free synthetic biology and molecular programming
Nucleic acid engineering.