MCM8 promotes NR4A1-mediated E2F1 transcription and facilitates renal cell carcinoma through enhancing aerobic glycolysis.

IF 5.9 2区 医学 Q2 CELL BIOLOGY
Shaobo Zhang, Haoqi Miao, Tian Han, Xiangzhen Wu, Chao Liang, Jian Qian, Pengfei Shao
{"title":"MCM8 promotes NR4A1-mediated E2F1 transcription and facilitates renal cell carcinoma through enhancing aerobic glycolysis.","authors":"Shaobo Zhang, Haoqi Miao, Tian Han, Xiangzhen Wu, Chao Liang, Jian Qian, Pengfei Shao","doi":"10.1007/s10565-025-10002-0","DOIUrl":null,"url":null,"abstract":"<p><p>Renal cell carcinoma (RCC) is a type of renal malignancy originated from the urinary tubular epithelial system. Despite its high incidence, the molecular mechanisms driving its pathogenesis remain poorly understood, limiting therapeutic advancements. This study explored the link between MCM8 and RCC progression. MCM8 displays significantly high expression in RCC tissues and was closely associated with RCC pathological staging. Knocking down endogenous MCM8 in RCC cells significantly suppressed malignant phenotypes, while simultaneously inducing apoptosis. Similarly, in vivo experiments confirmed these findings, showing a pronounced reduction in tumor growth upon MCM8 silencing. Mechanistic investigations revealed that MCM8 regulates E2F1 expression by interacting with the transcription factor NR4A1, thereby affecting E2F1 transcriptional activity. Additionally, MCM8 and E2F1 collaboratively influence aerobic glycolysis and the cellular behavior of RCC cells. In conclusion, this study identifies MCM8 as a tumor-promoting factor in RCC, with its oncogenic role potentially mediated by its regulation of E2F1 expression.</p>","PeriodicalId":9672,"journal":{"name":"Cell Biology and Toxicology","volume":"41 1","pages":"51"},"PeriodicalIF":5.9000,"publicationDate":"2025-02-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11850455/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cell Biology and Toxicology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s10565-025-10002-0","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Renal cell carcinoma (RCC) is a type of renal malignancy originated from the urinary tubular epithelial system. Despite its high incidence, the molecular mechanisms driving its pathogenesis remain poorly understood, limiting therapeutic advancements. This study explored the link between MCM8 and RCC progression. MCM8 displays significantly high expression in RCC tissues and was closely associated with RCC pathological staging. Knocking down endogenous MCM8 in RCC cells significantly suppressed malignant phenotypes, while simultaneously inducing apoptosis. Similarly, in vivo experiments confirmed these findings, showing a pronounced reduction in tumor growth upon MCM8 silencing. Mechanistic investigations revealed that MCM8 regulates E2F1 expression by interacting with the transcription factor NR4A1, thereby affecting E2F1 transcriptional activity. Additionally, MCM8 and E2F1 collaboratively influence aerobic glycolysis and the cellular behavior of RCC cells. In conclusion, this study identifies MCM8 as a tumor-promoting factor in RCC, with its oncogenic role potentially mediated by its regulation of E2F1 expression.

MCM8促进nr4a1介导的E2F1转录,通过增强有氧糖酵解促进肾细胞癌。
肾细胞癌(RCC)是一种起源于尿小管上皮系统的肾恶性肿瘤。尽管发病率高,但驱动其发病机制的分子机制仍然知之甚少,限制了治疗的进展。本研究探讨了MCM8与RCC进展之间的联系。MCM8在RCC组织中高表达,与RCC病理分期密切相关。在RCC细胞中敲除内源性MCM8可显著抑制恶性表型,同时诱导细胞凋亡。同样,体内实验证实了这些发现,表明MCM8沉默后肿瘤生长明显减少。机制研究表明,MCM8通过与转录因子NR4A1相互作用调控E2F1的表达,从而影响E2F1的转录活性。此外,MCM8和E2F1协同影响RCC细胞的有氧糖酵解和细胞行为。总之,本研究确定MCM8在RCC中是一种促瘤因子,其致瘤作用可能是通过调节E2F1表达介导的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Cell Biology and Toxicology
Cell Biology and Toxicology 生物-毒理学
CiteScore
9.90
自引率
4.90%
发文量
101
审稿时长
>12 weeks
期刊介绍: Cell Biology and Toxicology (CBT) is an international journal focused on clinical and translational research with an emphasis on molecular and cell biology, genetic and epigenetic heterogeneity, drug discovery and development, and molecular pharmacology and toxicology. CBT has a disease-specific scope prioritizing publications on gene and protein-based regulation, intracellular signaling pathway dysfunction, cell type-specific function, and systems in biomedicine in drug discovery and development. CBT publishes original articles with outstanding, innovative and significant findings, important reviews on recent research advances and issues of high current interest, opinion articles of leading edge science, and rapid communication or reports, on molecular mechanisms and therapies in diseases.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信