Filgotinib Improves Experimental Pulmonary Fibrosis by Modulating JAK1/STAT3/SOCS3/IL-17A Signalling

IF 2.7 4区 医学 Q2 PHARMACOLOGY & PHARMACY
Yunying Lv, Guanghua Zhang, Dexin Kong, Wanglin Jiang
{"title":"Filgotinib Improves Experimental Pulmonary Fibrosis by Modulating JAK1/STAT3/SOCS3/IL-17A Signalling","authors":"Yunying Lv,&nbsp;Guanghua Zhang,&nbsp;Dexin Kong,&nbsp;Wanglin Jiang","doi":"10.1111/bcpt.70012","DOIUrl":null,"url":null,"abstract":"<div>\n \n \n <section>\n \n <h3> Background</h3>\n \n <p>Regulatory agencies in Europe and Japan have approved filgotinib, a selective JAK1 inhibitor, for use in treating rheumatoid arthritis, but its effect and mechanism of action in treating pulmonary fibrosis remain unclear.</p>\n </section>\n \n <section>\n \n <h3> Methods</h3>\n \n <p>We performed an in vivo investigation in rats on filgotinib's effect on pulmonary fibrosis resulting from the intratracheal infusion of bleomycin (BLM). Then, we focused on the mechanisms by which filgotinib inhibits experimentally induced pulmonary fibrosis in vitro by determining its effect on TGF-β1-induced proliferation of mouse lung fibroblasts.</p>\n </section>\n \n <section>\n \n <h3> Results</h3>\n \n <p>Continuous gavage of filgotinib at 20 mg/kg for 14 days elicited protective effects in the BLM-induced rat experimental pulmonary fibrosis model, as reflected in changes in Hounsfield units as an indicator of overall pulmonary function and in the lung coefficient and lung microscopic pathology scores as indicators of gross pulmonary pathology. Protein expression levels of IL-17A, phosphorylated tyrosine kinase (p-JAK1), p-STAT3 and cytokine signal transduction inhibitor 3 (SOCS3) were also changed. In in vitro studies, filgotinib at 1 μM reduced TGF-β1-induced fibroblast proliferation and produced lower levels of IL-17A, p-JAK1 and p-STAT3, but higher SOCS3.</p>\n </section>\n \n <section>\n \n <h3> Conclusions</h3>\n \n <p>Filgotinib appeared to alleviate experimental pulmonary fibrosis by reducing fibroblast proliferation via inhibition of the JAK1/STAT3/SOCS3/IL-17A pathway.</p>\n </section>\n </div>","PeriodicalId":8733,"journal":{"name":"Basic & Clinical Pharmacology & Toxicology","volume":"136 4","pages":""},"PeriodicalIF":2.7000,"publicationDate":"2025-02-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Basic & Clinical Pharmacology & Toxicology","FirstCategoryId":"3","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/bcpt.70012","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
引用次数: 0

Abstract

Background

Regulatory agencies in Europe and Japan have approved filgotinib, a selective JAK1 inhibitor, for use in treating rheumatoid arthritis, but its effect and mechanism of action in treating pulmonary fibrosis remain unclear.

Methods

We performed an in vivo investigation in rats on filgotinib's effect on pulmonary fibrosis resulting from the intratracheal infusion of bleomycin (BLM). Then, we focused on the mechanisms by which filgotinib inhibits experimentally induced pulmonary fibrosis in vitro by determining its effect on TGF-β1-induced proliferation of mouse lung fibroblasts.

Results

Continuous gavage of filgotinib at 20 mg/kg for 14 days elicited protective effects in the BLM-induced rat experimental pulmonary fibrosis model, as reflected in changes in Hounsfield units as an indicator of overall pulmonary function and in the lung coefficient and lung microscopic pathology scores as indicators of gross pulmonary pathology. Protein expression levels of IL-17A, phosphorylated tyrosine kinase (p-JAK1), p-STAT3 and cytokine signal transduction inhibitor 3 (SOCS3) were also changed. In in vitro studies, filgotinib at 1 μM reduced TGF-β1-induced fibroblast proliferation and produced lower levels of IL-17A, p-JAK1 and p-STAT3, but higher SOCS3.

Conclusions

Filgotinib appeared to alleviate experimental pulmonary fibrosis by reducing fibroblast proliferation via inhibition of the JAK1/STAT3/SOCS3/IL-17A pathway.

求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
5.60
自引率
6.50%
发文量
126
审稿时长
1 months
期刊介绍: Basic & Clinical Pharmacology and Toxicology is an independent journal, publishing original scientific research in all fields of toxicology, basic and clinical pharmacology. This includes experimental animal pharmacology and toxicology and molecular (-genetic), biochemical and cellular pharmacology and toxicology. It also includes all aspects of clinical pharmacology: pharmacokinetics, pharmacodynamics, therapeutic drug monitoring, drug/drug interactions, pharmacogenetics/-genomics, pharmacoepidemiology, pharmacovigilance, pharmacoeconomics, randomized controlled clinical trials and rational pharmacotherapy. For all compounds used in the studies, the chemical constitution and composition should be known, also for natural compounds.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信