Evaluation of New-Modelled Recombinant Human Insulin (rh-Insulin) Analog Expressed in E. coli Using Radioiodination Technique Followed by In Vivo Biodistribution in Diabetes-Induced Mice

IF 0.9 4区 医学 Q4 BIOCHEMICAL RESEARCH METHODS
Gamal Abdelaziz, Ibrahim Y. Abdelghany, Nasser F. Mostafa
{"title":"Evaluation of New-Modelled Recombinant Human Insulin (rh-Insulin) Analog Expressed in E. coli Using Radioiodination Technique Followed by In Vivo Biodistribution in Diabetes-Induced Mice","authors":"Gamal Abdelaziz,&nbsp;Ibrahim Y. Abdelghany,&nbsp;Nasser F. Mostafa","doi":"10.1002/jlcr.4134","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>Biologists have significantly improved various techniques for confirming the physiological and pharmacological activity of new proteins produced by recombinant DNA technology, such as Western blotting, ELISA, and flow cytometry. Although these methods are costly and comparatively low in efficiency, our study focuses on developing a real-time approach to investigate the physiological activity of our new recombinant human insulin (rh-Insulin), which is expressed in <i>Escherichia coli</i>. An in vivo biodistribution study of radioiodinated rh-Insulin (<sup>125</sup>I-rh-Insulin) was conducted in diabetic-induced mice, exploiting the capability of tyrosine residues in protein molecules to undergo electrophilic substitution of hydrogen atoms with traceable <sup>125</sup>I atoms. We studied many factors to optimize the conditions for the iodination reaction, including the amount of substrate, the amount of chloramine-T, pH, temperature, and reaction time. A high radiochemical yield of 99.01 ± 0.2% was achieved. The in vivo step involved the administration of <sup>125</sup>I-rh-Insulin intravenously (I.V.) in previously induced diabetic mice to study the pharmacokinetics of the new insulin analog. Results show a homogeneous distribution of insulin molecules throughout the body organs, correlating with organ mass, size, and functionality, with no accumulation in distinct organs. The clearance of insulin from the body occurs via both renal and hepatic routes due to the aqueous nature of insulin. Additionally, a parallel experiment was conducted on diabetic mice using only rh-Insulin, resulting in a significant reduction in glucose levels in the mice's blood, thereby exploring the physiological activity of insulin and confirming the ability of our new construct to lower blood glucose levels in diabetic mice. Consequently, this method appears to be much more rapid and effective for the evaluation of biological molecules in vivo using radioactive tracing techniques.</p>\n </div>","PeriodicalId":16288,"journal":{"name":"Journal of labelled compounds & radiopharmaceuticals","volume":"68 1-2","pages":""},"PeriodicalIF":0.9000,"publicationDate":"2025-02-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of labelled compounds & radiopharmaceuticals","FirstCategoryId":"3","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/jlcr.4134","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0

Abstract

Biologists have significantly improved various techniques for confirming the physiological and pharmacological activity of new proteins produced by recombinant DNA technology, such as Western blotting, ELISA, and flow cytometry. Although these methods are costly and comparatively low in efficiency, our study focuses on developing a real-time approach to investigate the physiological activity of our new recombinant human insulin (rh-Insulin), which is expressed in Escherichia coli. An in vivo biodistribution study of radioiodinated rh-Insulin (125I-rh-Insulin) was conducted in diabetic-induced mice, exploiting the capability of tyrosine residues in protein molecules to undergo electrophilic substitution of hydrogen atoms with traceable 125I atoms. We studied many factors to optimize the conditions for the iodination reaction, including the amount of substrate, the amount of chloramine-T, pH, temperature, and reaction time. A high radiochemical yield of 99.01 ± 0.2% was achieved. The in vivo step involved the administration of 125I-rh-Insulin intravenously (I.V.) in previously induced diabetic mice to study the pharmacokinetics of the new insulin analog. Results show a homogeneous distribution of insulin molecules throughout the body organs, correlating with organ mass, size, and functionality, with no accumulation in distinct organs. The clearance of insulin from the body occurs via both renal and hepatic routes due to the aqueous nature of insulin. Additionally, a parallel experiment was conducted on diabetic mice using only rh-Insulin, resulting in a significant reduction in glucose levels in the mice's blood, thereby exploring the physiological activity of insulin and confirming the ability of our new construct to lower blood glucose levels in diabetic mice. Consequently, this method appears to be much more rapid and effective for the evaluation of biological molecules in vivo using radioactive tracing techniques.

Abstract Image

利用放射性碘技术评价新型重组人胰岛素(rh-胰岛素)类似物在大肠杆菌中表达及在糖尿病小鼠体内生物分布
生物学家已经显著改进了各种技术,以确认重组DNA技术产生的新蛋白质的生理和药理活性,如Western blotting、ELISA和流式细胞术。虽然这些方法成本高且效率相对较低,但我们的研究重点是开发一种实时方法来研究我们在大肠杆菌中表达的重组人胰岛素(rh-Insulin)的生理活性。在糖尿病小鼠体内进行了放射性碘化rh-胰岛素(125I-rh-胰岛素)的生物分布研究,利用蛋白质分子中酪氨酸残基的亲电性取代氢原子与可追踪的125I原子的能力。研究了底物用量、氯胺- t用量、pH、温度、反应时间等因素对碘化反应的影响。放射化学产率高达99.01±0.2%。体内步骤包括在先前诱导的糖尿病小鼠中静脉注射125i -rh-胰岛素,以研究新的胰岛素类似物的药代动力学。结果显示胰岛素分子在全身各器官分布均匀,与器官质量、大小和功能相关,在不同的器官中没有积累。由于胰岛素的水性质,胰岛素从体内的清除通过肾脏和肝脏两种途径发生。此外,我们还对糖尿病小鼠进行了仅使用rh-胰岛素的平行实验,结果显示小鼠血液中的葡萄糖水平显著降低,从而探索胰岛素的生理活性,并证实我们的新结构降低糖尿病小鼠血糖水平的能力。因此,这种方法对于使用放射性示踪技术评估体内生物分子似乎更加快速和有效。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
3.30
自引率
0.00%
发文量
57
审稿时长
1 months
期刊介绍: The Journal of Labelled Compounds and Radiopharmaceuticals publishes all aspects of research dealing with labeled compound preparation and applications of these compounds. This includes tracer methods used in medical, pharmacological, biological, biochemical and chemical research in vitro and in vivo. The Journal of Labelled Compounds and Radiopharmaceuticals devotes particular attention to biomedical research, diagnostic and therapeutic applications of radiopharmaceuticals, covering all stages of development from basic metabolic research and technological development to preclinical and clinical studies based on physically and chemically well characterized molecular structures, coordination compounds and nano-particles.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信