Design and Synthesis of a 18F-Radiolabeled Pyrrolo[2,3-d]pyrimidine Ligand as a CSF1R Receptor PET Imaging Agent

IF 0.9 4区 医学 Q4 BIOCHEMICAL RESEARCH METHODS
Srinivasulu Cherukupalli, Morten Karlsen, Bård Helge Hoff, Eirik Sundby
{"title":"Design and Synthesis of a 18F-Radiolabeled Pyrrolo[2,3-d]pyrimidine Ligand as a CSF1R Receptor PET Imaging Agent","authors":"Srinivasulu Cherukupalli,&nbsp;Morten Karlsen,&nbsp;Bård Helge Hoff,&nbsp;Eirik Sundby","doi":"10.1002/jlcr.4131","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>Colony-stimulating factor 1 receptor (CSF1R or c-FMS), a class III receptor tyrosine kinase, is significantly expressed in mononuclear phagocytes and in the central nervous system. It has been identified as a potential drug and imaging target in numerous inflammatory, cancerous, and neurodegenerative diseases. Despite several attempts, no validated CSF1R PET tracer is currently available. Herein, we report the design and synthesis of a <sup>18</sup>F-radiolabeled pyrrolo[2,3-<i>d</i>]pyrimidine molecule based on previously developed potent and selective CSF1R inhibitors. Initially, a nonlabeled fluorinated compound was synthesized using conventional and microwave methods, and it exhibited potent CSF1R inhibitory activity (IC<sub>50</sub> = 6 nM). A tosylate precursor was then synthesized for subsequent radiofluorination. The <sup>18</sup>F-radiolabeled compound was produced using K[<sup>18</sup>F]F Kryptofix 222 (K<sub>2.2.2</sub>)-carbonate in acetonitrile (10% DMF). The optimal labeling conditions, with a tosylate leaving group at 100°C for 5 min, resulted in the production of the <sup>18</sup>F-radiolabeled pyrrolo[2,3-<i>d</i>]pyrimidine CSF1R inhibitor with high purity and with a molar activity of the final product of 57 GBq/μmol. The synthesized inhibitor might open new possibilities for in vivo imaging in neuroinflammation and related disorders, and future studies will evaluate its performance as a PET tracer.</p>\n </div>","PeriodicalId":16288,"journal":{"name":"Journal of labelled compounds & radiopharmaceuticals","volume":"68 1-2","pages":""},"PeriodicalIF":0.9000,"publicationDate":"2025-02-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of labelled compounds & radiopharmaceuticals","FirstCategoryId":"3","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/jlcr.4131","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0

Abstract

Colony-stimulating factor 1 receptor (CSF1R or c-FMS), a class III receptor tyrosine kinase, is significantly expressed in mononuclear phagocytes and in the central nervous system. It has been identified as a potential drug and imaging target in numerous inflammatory, cancerous, and neurodegenerative diseases. Despite several attempts, no validated CSF1R PET tracer is currently available. Herein, we report the design and synthesis of a 18F-radiolabeled pyrrolo[2,3-d]pyrimidine molecule based on previously developed potent and selective CSF1R inhibitors. Initially, a nonlabeled fluorinated compound was synthesized using conventional and microwave methods, and it exhibited potent CSF1R inhibitory activity (IC50 = 6 nM). A tosylate precursor was then synthesized for subsequent radiofluorination. The 18F-radiolabeled compound was produced using K[18F]F Kryptofix 222 (K2.2.2)-carbonate in acetonitrile (10% DMF). The optimal labeling conditions, with a tosylate leaving group at 100°C for 5 min, resulted in the production of the 18F-radiolabeled pyrrolo[2,3-d]pyrimidine CSF1R inhibitor with high purity and with a molar activity of the final product of 57 GBq/μmol. The synthesized inhibitor might open new possibilities for in vivo imaging in neuroinflammation and related disorders, and future studies will evaluate its performance as a PET tracer.

求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
3.30
自引率
0.00%
发文量
57
审稿时长
1 months
期刊介绍: The Journal of Labelled Compounds and Radiopharmaceuticals publishes all aspects of research dealing with labeled compound preparation and applications of these compounds. This includes tracer methods used in medical, pharmacological, biological, biochemical and chemical research in vitro and in vivo. The Journal of Labelled Compounds and Radiopharmaceuticals devotes particular attention to biomedical research, diagnostic and therapeutic applications of radiopharmaceuticals, covering all stages of development from basic metabolic research and technological development to preclinical and clinical studies based on physically and chemically well characterized molecular structures, coordination compounds and nano-particles.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信