{"title":"Unveiling the properties of ascorbic acid against M. tb through in silico approach: A comparative drug-based study","authors":"Aviral Kaushik, Arti Peshrana, Rohit Barapatre, Shreya Pansheriya, Radhey Shyam Kaushal","doi":"10.1007/s00894-025-06322-x","DOIUrl":null,"url":null,"abstract":"<div><h3>Context</h3><p>Tuberculosis (TB) is a highly contagious and potentially life-threatening disease caused by <i>Mycobacterium tuberculosis</i> (<i>M. tb</i>). According to the World Health Organization (WHO), 7.5 million people were diagnosed with TB in 2022. Combating this disease requires ongoing efforts in TB drug discovery and the development of new treatment regimens. Identifying novel drug targets and inhibitory molecules is crucial in the fight against latent TB, particularly due to the rising issue of <i>M. tb</i> drug resistance. In modern drug discovery, the focus has shifted towards identifying new, safe natural compounds with enhanced biological activity against TB. One promising compound is ascorbic acid (Vitamin C), which possesses pro-oxidant properties that generate free radicals along with the first and second-line anti-TB drugs, aiding in the eradication of <i>M. tb</i> during latent infections.</p><h3>Methods</h3><p>In the current research, extensive in silico studies have been conducted to investigate the potential of ascorbic acid as an inhibitor of various <i>M. tb</i> pathways, especially those involving protein folding (chaperone-mediated) and detoxification pathways. The proteins were analysed by various physicochemical and pharmacological parameters. Molecular docking of the selected proteins with existing first-line, second-line drugs and ascorbic acid was performed. Furthermore, the top-scoring molecular docking of ascorbic acid was subjected to Molecular Dynamics Simulation. The 500 ns Molecular Dynamics Simulation studies were carried out by GROMACS v2024.1 using CHARMM27 force field, TIP3P water model and using triclinic box for solvation. The obtained trajectories were analysed through XMGRACE tool.</p></div>","PeriodicalId":651,"journal":{"name":"Journal of Molecular Modeling","volume":"31 3","pages":""},"PeriodicalIF":2.1000,"publicationDate":"2025-02-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Molecular Modeling","FirstCategoryId":"92","ListUrlMain":"https://link.springer.com/article/10.1007/s00894-025-06322-x","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Context
Tuberculosis (TB) is a highly contagious and potentially life-threatening disease caused by Mycobacterium tuberculosis (M. tb). According to the World Health Organization (WHO), 7.5 million people were diagnosed with TB in 2022. Combating this disease requires ongoing efforts in TB drug discovery and the development of new treatment regimens. Identifying novel drug targets and inhibitory molecules is crucial in the fight against latent TB, particularly due to the rising issue of M. tb drug resistance. In modern drug discovery, the focus has shifted towards identifying new, safe natural compounds with enhanced biological activity against TB. One promising compound is ascorbic acid (Vitamin C), which possesses pro-oxidant properties that generate free radicals along with the first and second-line anti-TB drugs, aiding in the eradication of M. tb during latent infections.
Methods
In the current research, extensive in silico studies have been conducted to investigate the potential of ascorbic acid as an inhibitor of various M. tb pathways, especially those involving protein folding (chaperone-mediated) and detoxification pathways. The proteins were analysed by various physicochemical and pharmacological parameters. Molecular docking of the selected proteins with existing first-line, second-line drugs and ascorbic acid was performed. Furthermore, the top-scoring molecular docking of ascorbic acid was subjected to Molecular Dynamics Simulation. The 500 ns Molecular Dynamics Simulation studies were carried out by GROMACS v2024.1 using CHARMM27 force field, TIP3P water model and using triclinic box for solvation. The obtained trajectories were analysed through XMGRACE tool.
期刊介绍:
The Journal of Molecular Modeling focuses on "hardcore" modeling, publishing high-quality research and reports. Founded in 1995 as a purely electronic journal, it has adapted its format to include a full-color print edition, and adjusted its aims and scope fit the fast-changing field of molecular modeling, with a particular focus on three-dimensional modeling.
Today, the journal covers all aspects of molecular modeling including life science modeling; materials modeling; new methods; and computational chemistry.
Topics include computer-aided molecular design; rational drug design, de novo ligand design, receptor modeling and docking; cheminformatics, data analysis, visualization and mining; computational medicinal chemistry; homology modeling; simulation of peptides, DNA and other biopolymers; quantitative structure-activity relationships (QSAR) and ADME-modeling; modeling of biological reaction mechanisms; and combined experimental and computational studies in which calculations play a major role.