Design, synthesis and antifungal study of novel 2-aryl-3,4-dihydroisoquinolin-2-ium salts containing benzoate moieties

IF 3.1 4区 医学 Q3 CHEMISTRY, MEDICINAL
Wei Chen, Yanxi Jin, Luyao Wang
{"title":"Design, synthesis and antifungal study of novel 2-aryl-3,4-dihydroisoquinolin-2-ium salts containing benzoate moieties","authors":"Wei Chen,&nbsp;Yanxi Jin,&nbsp;Luyao Wang","doi":"10.1007/s00044-025-03372-x","DOIUrl":null,"url":null,"abstract":"<div><p>To discover natural-derived fungicides, three series of 2-aryl-3,4-dihydroisoquinolinium salts (<b>6</b>–<b>8</b>) containing benzoate moieties were designed and synthesized based-on quaternary isoquinoline alkaloids. Their structures were confirmed by spectroscopic analysis. Antifungal activities against 10 phytopathogenic fungi were evaluated in vitro at 50 mg/L. Most of the title compounds exhibited moderate to excellent fungicidal activities, which were as active as the positive controls (chlorothalonil, carbendazim) and better than the reference model <b>9</b>. Furthermore, for <i>R. solani</i> and <i>R. cerealis</i> <b>8c</b> presented EC<sub>50</sub> values of 5.03 and 7.41 mg/L, respectively, equal to or <span>superior</span> than chlorothalonil (4.63 mg/L, 15.0313 mg/L). The SARs studies indicated that introduce the benzoate moieties had significant effect on the antifungal activity, in which the presence of 3′-CO<sub>2</sub>Me (<b>7</b>) and 4′-CO<sub>2</sub>Me (<b>8</b>) derivatives were more active than 2′-CO<sub>2</sub>Me ones (<b>6</b>). Further mechanism studies on <i>R. solani</i> elucidated that compound <b>8c</b> could increase the permeability of the cell membrane, dramatically induce the accumulation of ROS. These results revealed that compound <b>8c</b> could represent as a potential lead for the development of antifungal agents.</p><div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":699,"journal":{"name":"Medicinal Chemistry Research","volume":"34 3","pages":"709 - 719"},"PeriodicalIF":3.1000,"publicationDate":"2025-01-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Medicinal Chemistry Research","FirstCategoryId":"3","ListUrlMain":"https://link.springer.com/article/10.1007/s00044-025-03372-x","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, MEDICINAL","Score":null,"Total":0}
引用次数: 0

Abstract

To discover natural-derived fungicides, three series of 2-aryl-3,4-dihydroisoquinolinium salts (68) containing benzoate moieties were designed and synthesized based-on quaternary isoquinoline alkaloids. Their structures were confirmed by spectroscopic analysis. Antifungal activities against 10 phytopathogenic fungi were evaluated in vitro at 50 mg/L. Most of the title compounds exhibited moderate to excellent fungicidal activities, which were as active as the positive controls (chlorothalonil, carbendazim) and better than the reference model 9. Furthermore, for R. solani and R. cerealis 8c presented EC50 values of 5.03 and 7.41 mg/L, respectively, equal to or superior than chlorothalonil (4.63 mg/L, 15.0313 mg/L). The SARs studies indicated that introduce the benzoate moieties had significant effect on the antifungal activity, in which the presence of 3′-CO2Me (7) and 4′-CO2Me (8) derivatives were more active than 2′-CO2Me ones (6). Further mechanism studies on R. solani elucidated that compound 8c could increase the permeability of the cell membrane, dramatically induce the accumulation of ROS. These results revealed that compound 8c could represent as a potential lead for the development of antifungal agents.

新型苯甲酸酯基2-芳基-3,4-二氢异喹啉-2-ium盐的设计、合成及抗真菌研究
为寻找天然杀菌剂,以季异喹啉生物碱为基础,设计合成了3个含苯甲酸酯基团的2-芳基-3,4-二氢异喹啉盐(6-8)系列。通过光谱分析证实了它们的结构。以50 mg/L的浓度对10种植物病原真菌进行体外抑菌活性测定。大多数标题化合物具有中等至优异的杀真菌活性,其活性与阳性对照(百菌清、多菌灵)相当,且优于参考模型9。另外,对茄灰稻和谷草8c的EC50值分别为5.03和7.41 mg/L,与百菌清(4.63 mg/L、15.0313 mg/L)相当或优于后者。SARs研究表明,引入苯甲酸酯部分对抗真菌活性有显著影响,其中3 ' -CO2Me(7)和4 ' -CO2Me(8)衍生物的活性比2 ' -CO2Me衍生物更强(6)。对茄茄的进一步机制研究表明,化合物8c可以增加细胞膜的通透性,显著诱导ROS的积累。这些结果表明,化合物8c可能是开发抗真菌药物的潜在先导物。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Medicinal Chemistry Research
Medicinal Chemistry Research 医学-医药化学
CiteScore
4.70
自引率
3.80%
发文量
162
审稿时长
5.0 months
期刊介绍: Medicinal Chemistry Research (MCRE) publishes papers on a wide range of topics, favoring research with significant, new, and up-to-date information. Although the journal has a demanding peer review process, MCRE still boasts rapid publication, due in part, to the length of the submissions. The journal publishes significant research on various topics, many of which emphasize the structure-activity relationships of molecular biology.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信