Predictive modeling with linear machine learning can estimate glioblastoma survival in months based solely on MGMT-methylation status, age and sex

IF 1.9 3区 医学 Q3 CLINICAL NEUROLOGY
Emanuele Maragno, Sarah Ricchizzi, Nils Ralf Winter, Sönke Josua Hellwig, Walter Stummer, Tim Hahn, Markus Holling
{"title":"Predictive modeling with linear machine learning can estimate glioblastoma survival in months based solely on MGMT-methylation status, age and sex","authors":"Emanuele Maragno,&nbsp;Sarah Ricchizzi,&nbsp;Nils Ralf Winter,&nbsp;Sönke Josua Hellwig,&nbsp;Walter Stummer,&nbsp;Tim Hahn,&nbsp;Markus Holling","doi":"10.1007/s00701-025-06441-7","DOIUrl":null,"url":null,"abstract":"<div><h3>Purpose</h3><p>Machine Learning (ML) has become an essential tool for analyzing biomedical data, facilitating the prediction of treatment outcomes and patient survival. However, the effectiveness of ML models heavily relies on both the choice of algorithms and the quality of the input data. In this study, we aimed to develop a novel predictive model to estimate individual survival for patients diagnosed with glioblastoma (GBM), focusing on key variables such as O6-Methylguanine-DNA Methyltransferase (MGMT) methylation status, age, and sex.</p><h3>Methods</h3><p>To identify the optimal approach, we utilized retrospective data from 218 patients treated at our brain tumor center. The performance of the ML models was evaluated within repeated tenfold regression. The pipeline comprised five regression estimators, including both linear and non-linear algorithms. Permutation feature importance highlighted the feature with the most significant impact on the model. Statistical significance was assessed using a permutation test procedure.</p><h3>Results</h3><p>The best machine learning algorithm achieved a mean absolute error (MAE) of 12.65 (SD = ± 2.18) and an explained variance (EV) of 7% (SD = ± 1.8%) with <i>p</i> &lt; 0.001. Linear algorithms led to more accurate predictions than non-linear estimators. Feature importance testing indicated that age and positive MGMT-methylation influenced the predictions the most.</p><h3>Conclusion</h3><p>In summary, here we provide a novel approach allowing to predict GBM patient’s survival in months solely based on key parameters such as age, sex and MGMT-methylation status and underscores MGMT-methylation status as key prognostic factor for GBM patients survival.</p></div>","PeriodicalId":7370,"journal":{"name":"Acta Neurochirurgica","volume":"167 1","pages":""},"PeriodicalIF":1.9000,"publicationDate":"2025-02-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s00701-025-06441-7.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta Neurochirurgica","FirstCategoryId":"3","ListUrlMain":"https://link.springer.com/article/10.1007/s00701-025-06441-7","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CLINICAL NEUROLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Purpose

Machine Learning (ML) has become an essential tool for analyzing biomedical data, facilitating the prediction of treatment outcomes and patient survival. However, the effectiveness of ML models heavily relies on both the choice of algorithms and the quality of the input data. In this study, we aimed to develop a novel predictive model to estimate individual survival for patients diagnosed with glioblastoma (GBM), focusing on key variables such as O6-Methylguanine-DNA Methyltransferase (MGMT) methylation status, age, and sex.

Methods

To identify the optimal approach, we utilized retrospective data from 218 patients treated at our brain tumor center. The performance of the ML models was evaluated within repeated tenfold regression. The pipeline comprised five regression estimators, including both linear and non-linear algorithms. Permutation feature importance highlighted the feature with the most significant impact on the model. Statistical significance was assessed using a permutation test procedure.

Results

The best machine learning algorithm achieved a mean absolute error (MAE) of 12.65 (SD = ± 2.18) and an explained variance (EV) of 7% (SD = ± 1.8%) with p < 0.001. Linear algorithms led to more accurate predictions than non-linear estimators. Feature importance testing indicated that age and positive MGMT-methylation influenced the predictions the most.

Conclusion

In summary, here we provide a novel approach allowing to predict GBM patient’s survival in months solely based on key parameters such as age, sex and MGMT-methylation status and underscores MGMT-methylation status as key prognostic factor for GBM patients survival.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Acta Neurochirurgica
Acta Neurochirurgica 医学-临床神经学
CiteScore
4.40
自引率
4.20%
发文量
342
审稿时长
1 months
期刊介绍: The journal "Acta Neurochirurgica" publishes only original papers useful both to research and clinical work. Papers should deal with clinical neurosurgery - diagnosis and diagnostic techniques, operative surgery and results, postoperative treatment - or with research work in neuroscience if the underlying questions or the results are of neurosurgical interest. Reports on congresses are given in brief accounts. As official organ of the European Association of Neurosurgical Societies the journal publishes all announcements of the E.A.N.S. and reports on the activities of its member societies. Only contributions written in English will be accepted.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信