Teng Limin, Shuntaro Hatori, Shunsuke Fukushi, Xing Yi, Kota Chiba, Yoritaka Akimoto, Takashi Yamaguchi, Yuta Nishiyama, Shusaku Nomura, E. A. Chayani Dilrukshi
{"title":"A preliminary study to assess the brain waves during walking: artifact elimination using soft dynamic time warping","authors":"Teng Limin, Shuntaro Hatori, Shunsuke Fukushi, Xing Yi, Kota Chiba, Yoritaka Akimoto, Takashi Yamaguchi, Yuta Nishiyama, Shusaku Nomura, E. A. Chayani Dilrukshi","doi":"10.1007/s10015-024-00981-4","DOIUrl":null,"url":null,"abstract":"<div><p>Existing electroencephalography (EEG) studies predominantly involve participants in stationary positions, which presents challenges in accurately capturing EEG data during physical activities due to motion-induced noise and artifacts. This study aims to assess and validate the efficacy of the Soft Dynamic Time Warping (Soft-DTW) clustering method for analyzing EEG data collected during physical activity, focusing on an oddball auditory task performed while walking. Employing a mobile active bio-amplifier, the study captures brain activity and assesses auditory event-related potentials (ERPs) under dynamic conditions. The comparative performance of five clustering techniques, k-shape, kernels, k-means, Dynamic Time Warping, and Soft-DTW, in terms of their effectiveness in artifact reduction, was analyzed. Results indicated a significant difference between target and non-target auditory stimuli, with the target stimuli exhibiting a positive (positive) potential, although of smaller magnitude. This outcome suggests that, despite significant artifact interference from walking, Soft-DTW facilitates extracting differences in cognitive processes for the oddball task from the EEG data.</p></div>","PeriodicalId":46050,"journal":{"name":"Artificial Life and Robotics","volume":"30 1","pages":"136 - 142"},"PeriodicalIF":0.8000,"publicationDate":"2024-11-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Artificial Life and Robotics","FirstCategoryId":"1085","ListUrlMain":"https://link.springer.com/article/10.1007/s10015-024-00981-4","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ROBOTICS","Score":null,"Total":0}
引用次数: 0
Abstract
Existing electroencephalography (EEG) studies predominantly involve participants in stationary positions, which presents challenges in accurately capturing EEG data during physical activities due to motion-induced noise and artifacts. This study aims to assess and validate the efficacy of the Soft Dynamic Time Warping (Soft-DTW) clustering method for analyzing EEG data collected during physical activity, focusing on an oddball auditory task performed while walking. Employing a mobile active bio-amplifier, the study captures brain activity and assesses auditory event-related potentials (ERPs) under dynamic conditions. The comparative performance of five clustering techniques, k-shape, kernels, k-means, Dynamic Time Warping, and Soft-DTW, in terms of their effectiveness in artifact reduction, was analyzed. Results indicated a significant difference between target and non-target auditory stimuli, with the target stimuli exhibiting a positive (positive) potential, although of smaller magnitude. This outcome suggests that, despite significant artifact interference from walking, Soft-DTW facilitates extracting differences in cognitive processes for the oddball task from the EEG data.