Finding influential nodes via graph embedding and hybrid centrality in complex networks

IF 5.3 1区 数学 Q1 MATHEMATICS, INTERDISCIPLINARY APPLICATIONS
Aman Ullah , Yahui Meng
{"title":"Finding influential nodes via graph embedding and hybrid centrality in complex networks","authors":"Aman Ullah ,&nbsp;Yahui Meng","doi":"10.1016/j.chaos.2025.116151","DOIUrl":null,"url":null,"abstract":"<div><div>Finding influential nodes is essential for understanding the structure of complex networks and optimizing the dissemination of critical information. The key challenge lies in determining which nodes hold the most significance and how to identify and select a group of disseminators to maximize their influence. Therefore, researchers have proposed various approaches and centrality measures, each offering unique perspectives based on the network’s topology. However, existing methods encounter inherent issues due to their sole consideration of node topology information. They also overlook the interconnectedness between nodes during the node filtering process, leading to imprecise evaluation results and limitations in terms of spread scale. In this paper, we introduce a novel scheme to tackle this problem in the context of social complex networks, termed graph embedding-based hybrid centrality (GEHC). Our proposed GEHC scheme starts by employing the DeepWalk graph embedding method to project the high-dimensional complex graph into a simpler, low-dimensional vector space. This mapping enables efficient calculation of the Euclidean distance between local pairs of nodes, allowing us to capture the proximity of nodes accurately. To further enhance the identification of influential nodes, we integrate network topology information and hybrid centrality indices. To evaluate the performance of our approach, we conduct extensive experiments on real-life networks using standard evaluation metrics. Experimental results on real-world networks demonstrate that our proposed scheme achieves a Kendall rank correlation coefficient close to 0.9, reflecting a strong correlation with the outcomes of the susceptible–infected–recovered model and validating its effectiveness in identifying influential nodes. The experimental results showcase the superiority of our approach in accurately identifying nodes with high influence, surpassing the performance of traditional and recent methods in complex networks.</div></div>","PeriodicalId":9764,"journal":{"name":"Chaos Solitons & Fractals","volume":"194 ","pages":"Article 116151"},"PeriodicalIF":5.3000,"publicationDate":"2025-02-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chaos Solitons & Fractals","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S096007792500164X","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

Abstract

Finding influential nodes is essential for understanding the structure of complex networks and optimizing the dissemination of critical information. The key challenge lies in determining which nodes hold the most significance and how to identify and select a group of disseminators to maximize their influence. Therefore, researchers have proposed various approaches and centrality measures, each offering unique perspectives based on the network’s topology. However, existing methods encounter inherent issues due to their sole consideration of node topology information. They also overlook the interconnectedness between nodes during the node filtering process, leading to imprecise evaluation results and limitations in terms of spread scale. In this paper, we introduce a novel scheme to tackle this problem in the context of social complex networks, termed graph embedding-based hybrid centrality (GEHC). Our proposed GEHC scheme starts by employing the DeepWalk graph embedding method to project the high-dimensional complex graph into a simpler, low-dimensional vector space. This mapping enables efficient calculation of the Euclidean distance between local pairs of nodes, allowing us to capture the proximity of nodes accurately. To further enhance the identification of influential nodes, we integrate network topology information and hybrid centrality indices. To evaluate the performance of our approach, we conduct extensive experiments on real-life networks using standard evaluation metrics. Experimental results on real-world networks demonstrate that our proposed scheme achieves a Kendall rank correlation coefficient close to 0.9, reflecting a strong correlation with the outcomes of the susceptible–infected–recovered model and validating its effectiveness in identifying influential nodes. The experimental results showcase the superiority of our approach in accurately identifying nodes with high influence, surpassing the performance of traditional and recent methods in complex networks.
求助全文
约1分钟内获得全文 求助全文
来源期刊
Chaos Solitons & Fractals
Chaos Solitons & Fractals 物理-数学跨学科应用
CiteScore
13.20
自引率
10.30%
发文量
1087
审稿时长
9 months
期刊介绍: Chaos, Solitons & Fractals strives to establish itself as a premier journal in the interdisciplinary realm of Nonlinear Science, Non-equilibrium, and Complex Phenomena. It welcomes submissions covering a broad spectrum of topics within this field, including dynamics, non-equilibrium processes in physics, chemistry, and geophysics, complex matter and networks, mathematical models, computational biology, applications to quantum and mesoscopic phenomena, fluctuations and random processes, self-organization, and social phenomena.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信