Macrophage-myofibroblast transition contributes to the macrophage elimination and functional regeneration in the late stage of nerve injury

IF 4.6 2区 医学 Q1 NEUROSCIENCES
Yunlun Li , Jiale Cai , Yizhou Xu , Ying Zou , Shuyi Xu , Xinya Zheng , Lanya Fu , Jiaqi Zhang , Xinrui Ma , Ye He , Xianghai Wang , Kaixian Deng , Jiasong Guo
{"title":"Macrophage-myofibroblast transition contributes to the macrophage elimination and functional regeneration in the late stage of nerve injury","authors":"Yunlun Li ,&nbsp;Jiale Cai ,&nbsp;Yizhou Xu ,&nbsp;Ying Zou ,&nbsp;Shuyi Xu ,&nbsp;Xinya Zheng ,&nbsp;Lanya Fu ,&nbsp;Jiaqi Zhang ,&nbsp;Xinrui Ma ,&nbsp;Ye He ,&nbsp;Xianghai Wang ,&nbsp;Kaixian Deng ,&nbsp;Jiasong Guo","doi":"10.1016/j.expneurol.2025.115194","DOIUrl":null,"url":null,"abstract":"<div><div>Massive of macrophages are recruited to the injured nerve to remove the axonal and myelin debris for creating a conducive micro-environment for nerve regeneration. However, the fate of macrophages after the debris clearing remains unclear. In this study, we demonstrated that the number of macrophages in the crush injured sciatic nerve of mice peaked at 7 days post injury (dpi) and then decreased significantly in the late stage of nerve injury. Mechanismly, the macrophage elimination was primarily attributed to TGF-β/Smad3 signaling dependent macrophage-myofibroblast transition (MMT), rather than apoptosis or out-migration. Furthermore, MMT caused collagen deposition is conducive to nerve regeneration. Both macrophage depletion via clodronate liposomes and MMT blockade using TGF-β/Smad3 inhibitor significantly reduced collagen deposition and impaired functional nerve regeneration. In summary, the present study indicates that TGF-β/Smad3 regulated MMT contributes to macrophage elimination and functional recovery in the injury nerve.</div></div>","PeriodicalId":12246,"journal":{"name":"Experimental Neurology","volume":"387 ","pages":"Article 115194"},"PeriodicalIF":4.6000,"publicationDate":"2025-02-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Experimental Neurology","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0014488625000585","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Massive of macrophages are recruited to the injured nerve to remove the axonal and myelin debris for creating a conducive micro-environment for nerve regeneration. However, the fate of macrophages after the debris clearing remains unclear. In this study, we demonstrated that the number of macrophages in the crush injured sciatic nerve of mice peaked at 7 days post injury (dpi) and then decreased significantly in the late stage of nerve injury. Mechanismly, the macrophage elimination was primarily attributed to TGF-β/Smad3 signaling dependent macrophage-myofibroblast transition (MMT), rather than apoptosis or out-migration. Furthermore, MMT caused collagen deposition is conducive to nerve regeneration. Both macrophage depletion via clodronate liposomes and MMT blockade using TGF-β/Smad3 inhibitor significantly reduced collagen deposition and impaired functional nerve regeneration. In summary, the present study indicates that TGF-β/Smad3 regulated MMT contributes to macrophage elimination and functional recovery in the injury nerve.
求助全文
约1分钟内获得全文 求助全文
来源期刊
Experimental Neurology
Experimental Neurology 医学-神经科学
CiteScore
10.10
自引率
3.80%
发文量
258
审稿时长
42 days
期刊介绍: Experimental Neurology, a Journal of Neuroscience Research, publishes original research in neuroscience with a particular emphasis on novel findings in neural development, regeneration, plasticity and transplantation. The journal has focused on research concerning basic mechanisms underlying neurological disorders.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信