Development and comprehensive clinical validation of a deep neural network for radiation dose modelling to enhance magnetic resonance imaging guided radiotherapy
Moritz Schneider , Simon Gutwein , David Mönnich , Cihan Gani , Paul Fischer , Christian F. Baumgartner , Daniela Thorwarth
{"title":"Development and comprehensive clinical validation of a deep neural network for radiation dose modelling to enhance magnetic resonance imaging guided radiotherapy","authors":"Moritz Schneider , Simon Gutwein , David Mönnich , Cihan Gani , Paul Fischer , Christian F. Baumgartner , Daniela Thorwarth","doi":"10.1016/j.phro.2025.100723","DOIUrl":null,"url":null,"abstract":"<div><h3>Background and purpose</h3><div>Online adaptive magnetic resonance imaging (MRI)-guided radiotherapy requires fast dose calculation algorithms to reduce intra-fraction motion uncertainties and improve workflow efficiency. While Monte-Carlo simulations are precise but computationally intensive, neural networks promise fast and accurate dose modelling in strong magnetic fields. This study aimed to train and evaluate a deep neural network for dose modelling in MRI-guided radiotherapy using a comprehensive clinical dataset.</div></div><div><h3>Materials and methods</h3><div>A dataset of 6595 clinical irradiation segments from 125 1.5 T MRI-Linac radiotherapy plans for various tumors sites was used. A 3D U-Net was trained with 3961 segments using 3D imaging data and field parameters as input, Root Mean Squared Error and a custom loss function, with full Monte-Carlo simulations as ground truth. For 2656 segments from 50 patients, gamma pass rates (γ-PR) for 3 mm/3%, 2 mm/2%, and 1 mm/1% criteria were calculated to assess dose modelling accuracy. Performance was also tested in a standardized water phantom to evaluate basic radiation physics properties.</div></div><div><h3>Results</h3><div>The neural network accurately modeled dose distributions in both patient and water phantom settings. Median (range) γ-PR of 97.7% (87.5–100.0%), 89.1% (69.7–99.4%), and 60.8% (38.5–82.1%) were observed for treatment plans, and 97.1% (55.5–100.0%), 88.8% (38.8–99.7%), and 61.7% (17.9–94.4%) for individual segments, across the three criteria.</div></div><div><h3>Conclusion</h3><div>High median γ-PR and accurate modelling in both water phantom and clinical data demonstrate the high potential of neural networks for dose modelling. However, instances of lower γ-PR highlight the need for comprehensive test data, improved robustness and future built-in uncertainty estimation.</div></div>","PeriodicalId":36850,"journal":{"name":"Physics and Imaging in Radiation Oncology","volume":"33 ","pages":"Article 100723"},"PeriodicalIF":3.4000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physics and Imaging in Radiation Oncology","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2405631625000284","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ONCOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Background and purpose
Online adaptive magnetic resonance imaging (MRI)-guided radiotherapy requires fast dose calculation algorithms to reduce intra-fraction motion uncertainties and improve workflow efficiency. While Monte-Carlo simulations are precise but computationally intensive, neural networks promise fast and accurate dose modelling in strong magnetic fields. This study aimed to train and evaluate a deep neural network for dose modelling in MRI-guided radiotherapy using a comprehensive clinical dataset.
Materials and methods
A dataset of 6595 clinical irradiation segments from 125 1.5 T MRI-Linac radiotherapy plans for various tumors sites was used. A 3D U-Net was trained with 3961 segments using 3D imaging data and field parameters as input, Root Mean Squared Error and a custom loss function, with full Monte-Carlo simulations as ground truth. For 2656 segments from 50 patients, gamma pass rates (γ-PR) for 3 mm/3%, 2 mm/2%, and 1 mm/1% criteria were calculated to assess dose modelling accuracy. Performance was also tested in a standardized water phantom to evaluate basic radiation physics properties.
Results
The neural network accurately modeled dose distributions in both patient and water phantom settings. Median (range) γ-PR of 97.7% (87.5–100.0%), 89.1% (69.7–99.4%), and 60.8% (38.5–82.1%) were observed for treatment plans, and 97.1% (55.5–100.0%), 88.8% (38.8–99.7%), and 61.7% (17.9–94.4%) for individual segments, across the three criteria.
Conclusion
High median γ-PR and accurate modelling in both water phantom and clinical data demonstrate the high potential of neural networks for dose modelling. However, instances of lower γ-PR highlight the need for comprehensive test data, improved robustness and future built-in uncertainty estimation.