Phase transition thermodynamics of organic semiconductors N,N,N′,N′-tetraphenyl-p-phenylenediamine, N,N′-diphenyl-N,N′-di-p-tolylbenzene-1,4-diamine, and 4,4′-bis(m-tolylphenylamino)biphenyl

IF 2.2 3区 工程技术 Q3 CHEMISTRY, PHYSICAL
Airat A. Notfullin, Dmitrii N. Bolmatenkov, Andrey A. Sokolov, Ilya S. Balakhontsev, Alexander D. Kachmarzhik, Boris N. Solomonov, Mikhail I. Yagofarov
{"title":"Phase transition thermodynamics of organic semiconductors N,N,N′,N′-tetraphenyl-p-phenylenediamine, N,N′-diphenyl-N,N′-di-p-tolylbenzene-1,4-diamine, and 4,4′-bis(m-tolylphenylamino)biphenyl","authors":"Airat A. Notfullin,&nbsp;Dmitrii N. Bolmatenkov,&nbsp;Andrey A. Sokolov,&nbsp;Ilya S. Balakhontsev,&nbsp;Alexander D. Kachmarzhik,&nbsp;Boris N. Solomonov,&nbsp;Mikhail I. Yagofarov","doi":"10.1016/j.jct.2025.107470","DOIUrl":null,"url":null,"abstract":"<div><div>In this paper, we report a comprehensive analysis of the thermodynamic properties of organic semiconductors, namely, <em>N,N,N′,N′</em>-tetraphenyl-<em>p</em>-phenylenediamine (DDP), <em>N,N′</em>-diphenyl-<em>N,N′</em>-di-<em>p</em>-tolylbenzene-1,4-diamine (<em>p-</em>TTP), and 4,4′-bis(<em>m</em>-tolylphenylamino) biphenyl (TPD). Vapor pressures above crystalline and liquid (including supercooled liquid) phases over a wide temperature range were measured using thermogravimetry-fast scanning calorimetry method (TG- FSC). Based on the vapor pressures, the vaporization and sublimation enthalpies of the studied compounds were derived. Heat capacities of condensed phases, melting points and fusion enthalpies of DDP, <em>p-</em>TTP, and TPD were measured by differential scanning calorimetry. Using the measured heat capacities of the liquid and crystalline phases and the computed heat capacities of the ideal gas phase, the experimental data obtained in the present work were adjusted to 298.15 K and compared with the available literature values. For additional verification of the obtained results, the solution calorimetry method was applied, providing an independent way to determine fusion enthalpies at 298.15 K. The obtained data can be used for optimization of the vacuum deposition processes and determination of thermodynamic properties of glasses.</div></div>","PeriodicalId":54867,"journal":{"name":"Journal of Chemical Thermodynamics","volume":"206 ","pages":"Article 107470"},"PeriodicalIF":2.2000,"publicationDate":"2025-02-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Chemical Thermodynamics","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0021961425000242","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, we report a comprehensive analysis of the thermodynamic properties of organic semiconductors, namely, N,N,N′,N′-tetraphenyl-p-phenylenediamine (DDP), N,N′-diphenyl-N,N′-di-p-tolylbenzene-1,4-diamine (p-TTP), and 4,4′-bis(m-tolylphenylamino) biphenyl (TPD). Vapor pressures above crystalline and liquid (including supercooled liquid) phases over a wide temperature range were measured using thermogravimetry-fast scanning calorimetry method (TG- FSC). Based on the vapor pressures, the vaporization and sublimation enthalpies of the studied compounds were derived. Heat capacities of condensed phases, melting points and fusion enthalpies of DDP, p-TTP, and TPD were measured by differential scanning calorimetry. Using the measured heat capacities of the liquid and crystalline phases and the computed heat capacities of the ideal gas phase, the experimental data obtained in the present work were adjusted to 298.15 K and compared with the available literature values. For additional verification of the obtained results, the solution calorimetry method was applied, providing an independent way to determine fusion enthalpies at 298.15 K. The obtained data can be used for optimization of the vacuum deposition processes and determination of thermodynamic properties of glasses.
有机半导体N,N,N ',N ' -四苯基-对苯基二胺,N,N ' -二苯基-N,N ' -二对苯基-1,4-二胺和4,4 ' -双(间多苯基苯胺)联苯的相变热力学
本文综合分析了N,N,N ',N ' -四苯基-对苯基二胺(DDP)、N,N ' -二苯基-N,N ' -二对苯基-1,4-二胺(p-TTP)和4,4 ' -双(间多苯基苯胺)联苯(TPD)等有机半导体的热力学性质。采用热重-快速扫描量热法(TG- FSC)测量了晶体和液体(包括过冷液体)相在宽温度范围内的蒸汽压。根据蒸汽压,导出了所研究化合物的汽化焓和升华焓。用差示扫描量热法测定了DDP、p-TTP和TPD的凝聚相热容、熔点和熔解焓。利用液相和结晶相的实测热容和理想气相的计算热容,将实验数据调整为298.15 K,并与现有文献值进行了比较。为了进一步验证所得结果,采用溶液量热法,提供了一种独立的方法来确定298.15 K下的聚变焓。所得数据可用于真空沉积工艺的优化和玻璃热力学性能的测定。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Chemical Thermodynamics
Journal of Chemical Thermodynamics 工程技术-热力学
CiteScore
5.60
自引率
15.40%
发文量
199
审稿时长
79 days
期刊介绍: The Journal of Chemical Thermodynamics exists primarily for dissemination of significant new knowledge in experimental equilibrium thermodynamics and transport properties of chemical systems. The defining attributes of The Journal are the quality and relevance of the papers published. The Journal publishes work relating to gases, liquids, solids, polymers, mixtures, solutions and interfaces. Studies on systems with variability, such as biological or bio-based materials, gas hydrates, among others, will also be considered provided these are well characterized and reproducible where possible. Experimental methods should be described in sufficient detail to allow critical assessment of the accuracy claimed. Authors are encouraged to provide physical or chemical interpretations of the results. Articles can contain modelling sections providing representations of data or molecular insights into the properties or transformations studied. Theoretical papers on chemical thermodynamics using molecular theory or modelling are also considered. The Journal welcomes review articles in the field of chemical thermodynamics but prospective authors should first consult one of the Editors concerning the suitability of the proposed review. Contributions of a routine nature or reporting on uncharacterised materials are not accepted.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信