Paulina Marzec , Madeleine Richer , Robert S. Lahue
{"title":"Therapeutic targeting of mismatch repair proteins in triplet repeat expansion diseases","authors":"Paulina Marzec , Madeleine Richer , Robert S. Lahue","doi":"10.1016/j.dnarep.2025.103817","DOIUrl":null,"url":null,"abstract":"<div><div>Triplet repeat expansion diseases are a class of ∼20 inherited neurological disorders. Many of these diseases are debilitating, sometimes fatally so, and they have unfortunately proved difficult to treat. New compelling evidence shows that somatic repeat expansions in some diseases are essential to the pathogenic process, accelerating the age of onset and the rate of disease progression. Inhibiting somatic repeat expansions, therefore, provides a therapeutic opportunity to delay or block disease onset and/or slow progression. Several key aspects enhance the appeal of this therapeutic approach. First, the proteins responsible for promoting expansions are known from human genetics and model systems, obviating the need for lengthy target searches. They include the mismatch repair proteins MSH3, PMS1 and MLH3. Second, inhibiting or downregulating any of these three proteins is attractive due to their good safety profiles. Third, having three potential targets helps mitigate risk. Fourth, another protein, the nuclease FAN1, protects against expansions; in principle, increasing FAN1 activity could be therapeutic. Fifth, therapies aimed at inhibiting somatic repeat expansions could be used against several diseases that display this shared mechanistic feature, offering the opportunity for one treatment against multiple diseases. This review will address the underlying findings and the recent therapeutic advances in targeting MSH3, PMS1, MLH3 and FAN1 in triplet repeat expansion diseases.</div></div>","PeriodicalId":300,"journal":{"name":"DNA Repair","volume":"147 ","pages":"Article 103817"},"PeriodicalIF":3.0000,"publicationDate":"2025-02-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"DNA Repair","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1568786425000138","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"GENETICS & HEREDITY","Score":null,"Total":0}
引用次数: 0
Abstract
Triplet repeat expansion diseases are a class of ∼20 inherited neurological disorders. Many of these diseases are debilitating, sometimes fatally so, and they have unfortunately proved difficult to treat. New compelling evidence shows that somatic repeat expansions in some diseases are essential to the pathogenic process, accelerating the age of onset and the rate of disease progression. Inhibiting somatic repeat expansions, therefore, provides a therapeutic opportunity to delay or block disease onset and/or slow progression. Several key aspects enhance the appeal of this therapeutic approach. First, the proteins responsible for promoting expansions are known from human genetics and model systems, obviating the need for lengthy target searches. They include the mismatch repair proteins MSH3, PMS1 and MLH3. Second, inhibiting or downregulating any of these three proteins is attractive due to their good safety profiles. Third, having three potential targets helps mitigate risk. Fourth, another protein, the nuclease FAN1, protects against expansions; in principle, increasing FAN1 activity could be therapeutic. Fifth, therapies aimed at inhibiting somatic repeat expansions could be used against several diseases that display this shared mechanistic feature, offering the opportunity for one treatment against multiple diseases. This review will address the underlying findings and the recent therapeutic advances in targeting MSH3, PMS1, MLH3 and FAN1 in triplet repeat expansion diseases.
期刊介绍:
DNA Repair provides a forum for the comprehensive coverage of DNA repair and cellular responses to DNA damage. The journal publishes original observations on genetic, cellular, biochemical, structural and molecular aspects of DNA repair, mutagenesis, cell cycle regulation, apoptosis and other biological responses in cells exposed to genomic insult, as well as their relationship to human disease.
DNA Repair publishes full-length research articles, brief reports on research, and reviews. The journal welcomes articles describing databases, methods and new technologies supporting research on DNA repair and responses to DNA damage. Letters to the Editor, hot topics and classics in DNA repair, historical reflections, book reviews and meeting reports also will be considered for publication.