A neural network approach for collaborative cells: an innovative online rescheduling strategy for maximizing productivity

Irene Granata , Matthias Bues , Martina Calzavara , Maurizio Faccio , Benjamin Wingert
{"title":"A neural network approach for collaborative cells: an innovative online rescheduling strategy for maximizing productivity","authors":"Irene Granata ,&nbsp;Matthias Bues ,&nbsp;Martina Calzavara ,&nbsp;Maurizio Faccio ,&nbsp;Benjamin Wingert","doi":"10.1016/j.procs.2025.01.103","DOIUrl":null,"url":null,"abstract":"<div><div>Transitioning from Industry 4.0 to Industry 5.0 signifies a significant change in how technology integrates with workplace dynamics. While Industry 4.0 focused on streamlining production through automation, Industry 5.0 centers on human-centric approaches. This entails designing work environments that prioritize human comfort and efficiency by incorporating technology that complements human capabilities. Collaborative robots, known as cobots, play a pivotal role in this shift, aiding humans in tasks while fostering increased human involvement. However, maximizing the benefits of cobots necessitates workspace designs that optimize both human and robotic resources’ needs and preferences. A promising strategy involves implementing a dynamic task allocation system. This approach employs a neural network to adaptively reallocate tasks to prevent any loss in performance. Such advancements represent a significant stride towards establishing production settings that prioritize the effectiveness of human workers.</div></div>","PeriodicalId":20465,"journal":{"name":"Procedia Computer Science","volume":"253 ","pages":"Pages 415-424"},"PeriodicalIF":0.0000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Procedia Computer Science","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1877050925001115","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Transitioning from Industry 4.0 to Industry 5.0 signifies a significant change in how technology integrates with workplace dynamics. While Industry 4.0 focused on streamlining production through automation, Industry 5.0 centers on human-centric approaches. This entails designing work environments that prioritize human comfort and efficiency by incorporating technology that complements human capabilities. Collaborative robots, known as cobots, play a pivotal role in this shift, aiding humans in tasks while fostering increased human involvement. However, maximizing the benefits of cobots necessitates workspace designs that optimize both human and robotic resources’ needs and preferences. A promising strategy involves implementing a dynamic task allocation system. This approach employs a neural network to adaptively reallocate tasks to prevent any loss in performance. Such advancements represent a significant stride towards establishing production settings that prioritize the effectiveness of human workers.
协作细胞的神经网络方法:一种创新的在线重调度策略,以最大限度地提高生产率
从工业4.0到工业5.0的过渡意味着技术如何与工作场所动态相结合的重大变化。工业4.0侧重于通过自动化简化生产,而工业5.0则侧重于以人为本的方法。这需要设计工作环境,通过结合技术来补充人类的能力,优先考虑人类的舒适和效率。协作机器人(cobots)在这一转变中发挥着关键作用,它们在帮助人类完成任务的同时,促进了人类的参与度。然而,最大化协作机器人的好处需要工作空间的设计,优化人力和机器人资源的需求和偏好。一个有前景的策略包括实现一个动态任务分配系统。该方法采用神经网络自适应重新分配任务,以防止性能损失。这些进步代表着朝着建立优先考虑人类工人效率的生产环境迈出了重要的一步。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
4.50
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信