Computational fluid dynamics model utilizing proper orthogonal decomposition to assess coronary physiology and wall shear stress

IF 7 2区 医学 Q1 BIOLOGY
Amir Lotfi , Daniela Caraeni , Omar Haider , Abdullah Pervaiz , Yahya Modarres-Sadeghi
{"title":"Computational fluid dynamics model utilizing proper orthogonal decomposition to assess coronary physiology and wall shear stress","authors":"Amir Lotfi ,&nbsp;Daniela Caraeni ,&nbsp;Omar Haider ,&nbsp;Abdullah Pervaiz ,&nbsp;Yahya Modarres-Sadeghi","doi":"10.1016/j.compbiomed.2025.109840","DOIUrl":null,"url":null,"abstract":"<div><h3>Background</h3><div>Percutaneous coronary intervention (PCI) to alleviate symptoms and improve outcomes in patients with symptomatic coronary artery disease. However, conventional assessments like coronary angiography may not fully capture the hemodynamic significance of coronary lesions. This study explores the utility of Proper Orthogonal Decomposition (POD) in elucidating coronary flow dynamics pre- and post-stent placement.</div></div><div><h3>Objectives</h3><div>Through the utilization of POD modes, we aim to analyze the intricate geometries of individual patients, extracting dominant POD modes both pre- and post-PCI. By engaging these modes, our objective is to discern changes in velocity patterns and wall shear stress, offering insight into the physiological outcomes of stent interventions in coronary arteries.</div></div><div><h3>Methods</h3><div>The POD method with QR-decomposition was employed to generate POD modes, decomposing the vector field of interest into spatial functions modulated by time coefficients. Patients with prior coronary artery bypass surgery, myocardial bridging, collateral arteries, or recent myocardial infarction within 48 h were excluded from the study.</div></div><div><h3>Results</h3><div>Results demonstrated improved hemodynamic parameters post-PCI, with significant enhancements in coronary flow reserve and reduced wall shear stress. POD analysis revealed that the first five modes effectively characterized flow features, highlighting stenosis, stent deployment, and branch dynamics.</div></div><div><h3>Conclusion</h3><div>This exploratory study demonstrates POD's potential for real-time assessment of coronary lesion significance and post-intervention outcomes. Its efficiency in capturing key flow characteristics offers a promising tool for personalized decision-making in interventional cardiology, enhancing our understanding of coronary hemodynamics and optimizing treatment strategies.</div></div>","PeriodicalId":10578,"journal":{"name":"Computers in biology and medicine","volume":"188 ","pages":"Article 109840"},"PeriodicalIF":7.0000,"publicationDate":"2025-02-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computers in biology and medicine","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0010482525001908","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Background

Percutaneous coronary intervention (PCI) to alleviate symptoms and improve outcomes in patients with symptomatic coronary artery disease. However, conventional assessments like coronary angiography may not fully capture the hemodynamic significance of coronary lesions. This study explores the utility of Proper Orthogonal Decomposition (POD) in elucidating coronary flow dynamics pre- and post-stent placement.

Objectives

Through the utilization of POD modes, we aim to analyze the intricate geometries of individual patients, extracting dominant POD modes both pre- and post-PCI. By engaging these modes, our objective is to discern changes in velocity patterns and wall shear stress, offering insight into the physiological outcomes of stent interventions in coronary arteries.

Methods

The POD method with QR-decomposition was employed to generate POD modes, decomposing the vector field of interest into spatial functions modulated by time coefficients. Patients with prior coronary artery bypass surgery, myocardial bridging, collateral arteries, or recent myocardial infarction within 48 h were excluded from the study.

Results

Results demonstrated improved hemodynamic parameters post-PCI, with significant enhancements in coronary flow reserve and reduced wall shear stress. POD analysis revealed that the first five modes effectively characterized flow features, highlighting stenosis, stent deployment, and branch dynamics.

Conclusion

This exploratory study demonstrates POD's potential for real-time assessment of coronary lesion significance and post-intervention outcomes. Its efficiency in capturing key flow characteristics offers a promising tool for personalized decision-making in interventional cardiology, enhancing our understanding of coronary hemodynamics and optimizing treatment strategies.
求助全文
约1分钟内获得全文 求助全文
来源期刊
Computers in biology and medicine
Computers in biology and medicine 工程技术-工程:生物医学
CiteScore
11.70
自引率
10.40%
发文量
1086
审稿时长
74 days
期刊介绍: Computers in Biology and Medicine is an international forum for sharing groundbreaking advancements in the use of computers in bioscience and medicine. This journal serves as a medium for communicating essential research, instruction, ideas, and information regarding the rapidly evolving field of computer applications in these domains. By encouraging the exchange of knowledge, we aim to facilitate progress and innovation in the utilization of computers in biology and medicine.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信