A large confirmatory dynamic factor model for stock market returns in different time zones

IF 9.9 3区 经济学 Q1 ECONOMICS
Oliver B. Linton , Haihan Tang , Jianbin Wu
{"title":"A large confirmatory dynamic factor model for stock market returns in different time zones","authors":"Oliver B. Linton ,&nbsp;Haihan Tang ,&nbsp;Jianbin Wu","doi":"10.1016/j.jeconom.2025.105971","DOIUrl":null,"url":null,"abstract":"<div><div>We propose a confirmatory dynamic factor model for a large number of stocks whose returns are observed daily across multiple time zones. The model has a global factor and a continental factor that both drive the individual stock return series. We propose two estimators of the model: a quasi-maximum likelihood estimator (QML-just-identified), and an improved estimator based on an Expectation Maximization (EM) algorithm (QML-all-res). Our estimators are consistent and asymptotically normal under the large approximate factor model setting. In particular, the asymptotic distributions of QML-all-res are the same as those of the infeasible OLS estimators that treat factors as known and utilize all the restrictions on the parameters of the model. We apply the model to MSCI equity indices of 42 developed and emerging markets, and find that most markets are more integrated when the CBOE Volatility Index (VIX) is high.</div></div>","PeriodicalId":15629,"journal":{"name":"Journal of Econometrics","volume":"249 ","pages":"Article 105971"},"PeriodicalIF":9.9000,"publicationDate":"2025-02-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Econometrics","FirstCategoryId":"96","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0304407625000259","RegionNum":3,"RegionCategory":"经济学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ECONOMICS","Score":null,"Total":0}
引用次数: 0

Abstract

We propose a confirmatory dynamic factor model for a large number of stocks whose returns are observed daily across multiple time zones. The model has a global factor and a continental factor that both drive the individual stock return series. We propose two estimators of the model: a quasi-maximum likelihood estimator (QML-just-identified), and an improved estimator based on an Expectation Maximization (EM) algorithm (QML-all-res). Our estimators are consistent and asymptotically normal under the large approximate factor model setting. In particular, the asymptotic distributions of QML-all-res are the same as those of the infeasible OLS estimators that treat factors as known and utilize all the restrictions on the parameters of the model. We apply the model to MSCI equity indices of 42 developed and emerging markets, and find that most markets are more integrated when the CBOE Volatility Index (VIX) is high.
不同时区股票市场收益的大验证性动态因子模型
我们提出了一个验证性的动态因素模型的大量股票,其回报是每天观察跨多个时区。该模型有一个全球因子和一个大陆因子,两者都驱动个股收益序列。我们提出了模型的两个估计量:拟极大似然估计量(QML-just-identified)和基于期望最大化(EM)算法的改进估计量(QML-all-res)。在大近似因子模型设置下,我们的估计量是一致且渐近正态的。特别是,QML-all-res的渐近分布与将因子视为已知并利用模型参数的所有限制的不可行的OLS估计量的渐近分布相同。我们将该模型应用于42个发达市场和新兴市场的MSCI股票指数,发现当CBOE波动率指数(VIX)较高时,大多数市场的整合程度更高。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Econometrics
Journal of Econometrics 社会科学-数学跨学科应用
CiteScore
8.60
自引率
1.60%
发文量
220
审稿时长
3-8 weeks
期刊介绍: The Journal of Econometrics serves as an outlet for important, high quality, new research in both theoretical and applied econometrics. The scope of the Journal includes papers dealing with identification, estimation, testing, decision, and prediction issues encountered in economic research. Classical Bayesian statistics, and machine learning methods, are decidedly within the range of the Journal''s interests. The Annals of Econometrics is a supplement to the Journal of Econometrics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信